Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Nat Commun. 2019 Sep 6;10(1):4028. doi: 10.1038/s41467-019-12021-y.
Crosstalk is a major challenge to engineering sophisticated synthetic gene networks. A common approach is to insulate signal-transduction pathways by minimizing molecular-level crosstalk between endogenous and synthetic genetic components, but this strategy can be difficult to apply in the context of complex, natural gene networks and unknown interactions. Here, we show that synthetic gene networks can be engineered to compensate for crosstalk by integrating pathway signals, rather than by pathway insulation. We demonstrate this principle using reactive oxygen species (ROS)-responsive gene circuits in Escherichia coli that exhibit concentration-dependent crosstalk with non-cognate ROS. We quantitatively map the degree of crosstalk and design gene circuits that introduce compensatory crosstalk at the gene network level. The resulting gene network exhibits reduced crosstalk in the sensing of the two different ROS. Our results suggest that simple network motifs that compensate for pathway crosstalk can be used by biological networks to accurately interpret environmental signals.
串扰是构建复杂的合成基因网络的主要挑战。一种常见的方法是通过最小化内源性和合成遗传元件之间的分子水平串扰来隔离信号转导途径,但这种策略在复杂的天然基因网络和未知相互作用的情况下可能难以应用。在这里,我们表明,通过整合途径信号,而不是通过途径隔离,可以对合成基因网络进行工程设计以补偿串扰。我们使用大肠杆菌中对活性氧 (ROS) 有反应的基因回路来证明这一原理,这些基因回路与非同源 ROS 表现出浓度依赖性串扰。我们定量绘制了串扰的程度,并设计了在基因网络水平上引入补偿串扰的基因回路。由此产生的基因网络在两种不同 ROS 的传感中表现出较低的串扰。我们的结果表明,生物网络可以使用简单的网络基元来补偿途径串扰,从而准确地解释环境信号。