Laboratorio de Biotecnología Agrícola y de Alimentos-Ingeniería en Agronomía, Colegio de Ciencias e Ingenierías El Politécnico, Universidad San Francisco de Quito USFQ, Campus Cumbayá, 17-1200-841, Quito, Ecuador.
Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands.
Sci Rep. 2020 Jun 25;10(1):10319. doi: 10.1038/s41598-020-67074-7.
The plant hormones salicylic acid (SA) and jasmonic acid (JA) regulate defense mechanisms capable of overcoming different plant stress conditions and constitute distinct but interconnected signaling pathways. Interestingly, several other molecules are reported to trigger stress-specific defense responses to biotic and abiotic stresses. In this study, we investigated the effect of 14 elicitors against diverse but pivotal types of abiotic (drought) and biotic (the chewing insect Ascia monuste, the hemibiotrophic bacterium Pseudomonas syringae DC 3000 and the necrotrophic fungus Alternaria alternata) stresses on broccoli and Arabidopsis. Among the main findings, broccoli pre-treated with SA and chitosan showed the highest drought stress recovery in a dose-dependent manner. Several molecules led to increased drought tolerance over a period of three weeks. The enhanced drought tolerance after triggering the SA pathway was associated with stomata control. Moreover, methyl jasmonate (MeJA) reduced A. monuste insect development and plant damage, but unexpectedly, other elicitors increased both parameters. GUS reporter assays indicated expression of the SA-dependent PR1 gene in plants treated with nine elicitors, whereas the JA-dependent LOX2 gene was only expressed upon MeJA treatment. Overall, elicitors capable of tackling drought and biotrophic pathogens mainly triggered the SA pathway, but adversely also induced systemic susceptibility to chewing insects. These findings provide directions for potential future in-depth characterization and utilization of elicitors and induced resistance in plant protection.
植物激素水杨酸(SA)和茉莉酸(JA)调节防御机制,使植物能够克服不同的胁迫条件,并构成独特但相互关联的信号通路。有趣的是,有报道称,其他一些分子也能引发针对生物和非生物胁迫的特异性防御反应。在这项研究中,我们研究了 14 种诱导剂对不同但关键类型的非生物(干旱)和生物(咀嚼昆虫 Ascia monuste、半生物细菌 Pseudomonas syringae DC 3000 和坏死真菌 Alternaria alternata)胁迫对西兰花和拟南芥的影响。主要发现包括,SA 和壳聚糖预处理的西兰花表现出与剂量呈正相关的、依赖于 SA 的最佳干旱胁迫恢复。几种分子在三周的时间内提高了耐旱性。触发 SA 途径后增强的耐旱性与气孔控制有关。此外,茉莉酸甲酯(MeJA)减少了 A. monuste 昆虫的发育和植物损伤,但出乎意料的是,其他诱导剂增加了这两个参数。GUS 报告基因分析表明,在接受 9 种诱导剂处理的植物中,SA 依赖的 PR1 基因表达,而 JA 依赖的 LOX2 基因仅在 MeJA 处理时表达。总的来说,能够应对干旱和生物性病原菌的诱导剂主要触发了 SA 途径,但也不利地诱导了对咀嚼昆虫的系统性易感性。这些发现为在植物保护中进一步深入表征和利用诱导剂和诱导抗性提供了方向。