Kelly Jamie A, Olson Alexandra N, Neupane Krishna, Munshi Sneha, Emeterio Josue San, Pollack Lois, Woodside Michael T, Dinman Jonathan D
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742 USA.
Department of Physics, University of Alberta, Edmonton AB T6G2E1 Canada.
bioRxiv. 2020 Jun 15:2020.03.13.991083. doi: 10.1101/2020.03.13.991083.
17 years after the SARS-CoV epidemic, the world is facing the COVID-19 pandemic. COVID-19 is caused by a coronavirus named SARS-CoV-2. Given the most optimistic projections estimating that it will take over a year to develop a vaccine, the best short-term strategy may lie in identifying virus-specific targets for small molecule interventions. All coronaviruses utilize a molecular mechanism called -1 PRF to control the relative expression of their proteins. Prior analyses of SARS-CoV revealed that it employs a structurally unique three-stemmed mRNA pseudoknot to stimulate high rates of -1 PRF, and that it also harbors a -1 PRF attenuation element. Altering -1 PRF activity negatively impacts virus replication, suggesting that this molecular mechanism may be therapeutically targeted. Here we present a comparative analysis of the original SARS-CoV and SARS-CoV-2 frameshift signals. Structural and functional analyses revealed that both elements promote similar rates of -1 PRF and that silent coding mutations in the slippery sites and in all three stems of the pseudoknot strongly ablated -1 PRF activity. The upstream attenuator hairpin activity has also been functionally retained. Small-angle x-ray scattering indicated that the pseudoknots in SARS-CoV and SARS-CoV-2 had the same conformation. Finally, a small molecule previously shown to bind the SARS-CoV pseudoknot and inhibit -1 PRF was similarly effective against -1 PRF in SARS-CoV-2, suggesting that such frameshift inhibitors may provide promising lead compounds to counter the current pandemic.
在严重急性呼吸综合征冠状病毒(SARS-CoV)疫情爆发17年后,世界正面临新型冠状病毒肺炎(COVID-19)大流行。COVID-19由一种名为严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的冠状病毒引起。鉴于最乐观的预测估计开发一种疫苗需要一年多时间,最佳的短期策略可能在于确定小分子干预的病毒特异性靶点。所有冠状病毒都利用一种称为-1核糖体移码(-1 PRF)的分子机制来控制其蛋白质的相对表达。先前对SARS-CoV的分析表明,它采用一种结构独特的三茎mRNA假结来刺激高频率的-1 PRF,并且它还含有一个-1 PRF衰减元件。改变-1 PRF活性会对病毒复制产生负面影响,这表明这种分子机制可能是治疗的靶点。在此,我们对原始的SARS-CoV和SARS-CoV-2移码信号进行了比较分析。结构和功能分析表明,这两种元件促进相似频率的-1 PRF,并且假结的滑码位点和所有三个茎中的沉默编码突变强烈消除-1 PRF活性。上游衰减发夹活性也在功能上得以保留。小角X射线散射表明,SARS-CoV和SARS-CoV-2中的假结具有相同的构象。最后,一种先前显示能结合SARS-CoV假结并抑制-1 PRF的小分子对SARS-CoV-2中的-1 PRF同样有效,这表明这种移码抑制剂可能提供有前景的先导化合物来应对当前的大流行。