Anokhina Viktoriya S, Miller Benjamin L
Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, United States.
Department of Dermatology, University of Rochester, Rochester, New York 14642, United States.
Acc Chem Res. 2021 Sep 7;54(17):3349-3361. doi: 10.1021/acs.accounts.1c00316. Epub 2021 Aug 17.
Treatment of HIV-1 has largely involved targeting viral enzymes using a cocktail of inhibitors. However, resistance to these inhibitors and toxicity in the long term have pushed the field to identify new therapeutic targets. To that end, -1 programmed ribosomal frameshifting (-1 PRF) has gained attention as a potential node for therapeutic intervention. In this process, a ribosome moves one nucleotide backward in the course of translating a mRNA, revealing a new reading frame for protein synthesis. In HIV-1, -1 PRF allows the virus to regulate the ratios of enzymatic and structural proteins as needed for correct viral particle assembly. Two RNA structural elements are central to -1 PRF in HIV: a slippery sequence and a highly conserved stable hairpin called the HIV-1 frameshifting stimulatory signal (FSS). Dysregulation of -1 PRF is deleterious for the virus. Thus, -1 PRF is an attractive target for new antiviral development. It is important to note that HIV-1 is not the only virus exploiting -1 PRF for regulating production of its proteins. Coronaviruses, including the COVID-19 pandemic virus SARS-CoV-2, also rely on -1 PRF. In SARS-CoV-2 and other coronaviruses, -1 PRF is required for synthesis of RNA-dependent RNA polymerase and several other nonstructural proteins. Coronaviruses employ a more complex RNA structural element for regulating -1 PRF called a pseudoknot. The purpose of this Account is primarily to review the development of molecules targeting HIV-1 -1 PRF. These approaches are case studies illustrating how the entire pipeline from screening to the generation of high-affinity leads might be implemented. We consider both target-based and function-based screening, with a particular focus on our group's approach beginning with a resin-bound dynamic combinatorial library (RBDCL) screen. We then used rational design approaches to optimize binding affinity, selectivity, and cellular bioavailability. Our tactic is, to the best of our knowledge, the only study resulting in compounds that bind specifically to the HIV-1 FSS RNA and reduce infectivity of laboratory and drug-resistant strains of HIV-1 in human cells. Lessons learned from strategies targeting -1 PRF HIV-1 might provide solutions in the development of antivirals in areas of unmet medical need. This includes the development of new frameshift-altering therapies for SARS-CoV-2, approaches to which are very recently beginning to appear.
对HIV-1的治疗主要涉及使用抑制剂鸡尾酒靶向病毒酶。然而,对这些抑制剂的耐药性以及长期的毒性促使该领域寻找新的治疗靶点。为此,-1程序性核糖体移码(-1 PRF)作为治疗干预的潜在节点受到了关注。在这个过程中,核糖体在翻译mRNA的过程中向后移动一个核苷酸,从而为蛋白质合成揭示一个新的阅读框。在HIV-1中,-1 PRF使病毒能够根据正确的病毒颗粒组装所需来调节酶蛋白和结构蛋白的比例。两个RNA结构元件对HIV中的-1 PRF至关重要:一个滑序列和一个高度保守的稳定发夹结构,称为HIV-1移码刺激信号(FSS)。-1 PRF的失调对病毒是有害的。因此,-1 PRF是新抗病毒药物开发的一个有吸引力的靶点。需要注意的是,HIV-1并不是唯一利用-1 PRF来调节其蛋白质产生的病毒。冠状病毒,包括引发COVID-19大流行的病毒SARS-CoV-2,也依赖-1 PRF。在SARS-CoV-2和其他冠状病毒中,-1 PRF是合成RNA依赖性RNA聚合酶和其他几种非结构蛋白所必需的。冠状病毒采用一种更复杂的RNA结构元件来调节-1 PRF,称为假结。本综述的主要目的是回顾针对HIV-1 -1 PRF的分子开发。这些方法是案例研究,说明了从筛选到产生高亲和力先导化合物的整个流程是如何实施的。我们考虑了基于靶点和基于功能的筛选,特别关注我们团队从树脂结合动态组合库(RBDCL)筛选开始的方法。然后我们使用合理设计方法来优化结合亲和力、选择性和细胞生物利用度。据我们所知,我们的策略是唯一一项产生能特异性结合HIV-1 FSS RNA并降低HIV-1实验室菌株和耐药菌株在人细胞中感染性的化合物的研究。从针对HIV-1 -1 PRF的策略中学到的经验教训可能为未满足医疗需求领域的抗病毒药物开发提供解决方案。这包括为SARS-CoV-2开发新的改变移码的疗法,相关方法最近才开始出现。