Gao Xinglong, Zheng Zhong, Pan Yifan, Song Shuyi, Xu Zhen
Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China.
Xinjiang Key Laboratory of High Value Green Utilization of Low-Rank Coal, School of Physics and Materials Science, Changji University, Changji, Xinjiang, 831100, China.
Adv Sci (Weinh). 2025 Jan;12(2):e2411437. doi: 10.1002/advs.202411437. Epub 2024 Nov 21.
The low lithium-ion conductivity of polyethylene oxide (PEO)-based polymer electrolytes limits their application in solid-state lithium batteries and related fields. Here, ionic liquids (ILs) are injected into hollow silicon nanorods (HSNRs) to prepare a composite solid polymer electrolyte (CSPE) with aligned HSNRs containing ILs (F-ILs@HSNRs). Applying a magnetic field promoted uniform dispersion and orientation of F-ILs@HSNRs in CSPE. The addition of F-ILs@HSNRs reduced PEO crystallinity and formed Li transport pathways at the F-ILs@HSNRs/PEO interface. Calculations and multi-physics simulations reveal that ILs within F-ILs@HSNRs contribute most to lithium-ion conduction, followed by the F-ILs@HSNRs/PEO interface. When F-ILs@HSNRs are arranged perpendicular to the electrodes, the CSPE exhibits the shortest Li migration pathways, resulting in stable and efficient lithium-ion conduction. The conductivity (2.14 × 10 S cm) and lithium-ion migration number t (0.307) are the highest, being 125 times and 184% higher, respectively, than those of PEO-LiTFSI, when compared to CSPEs with randomly arranged or parallel-aligned F-ILs@HSNRs. Furthermore, Li|CSPE|Li batteries and LiFePO|CSPE|Li batteries display stable cycling for over 2000 h, with coulombic efficiency approaching 100%. Excellent electrochemical reversibility is also confirmed in the rate performance test.
基于聚环氧乙烷(PEO)的聚合物电解质的锂离子电导率较低,限制了它们在固态锂电池及相关领域的应用。在此,将离子液体(ILs)注入中空硅纳米棒(HSNRs)中,以制备一种复合固体聚合物电解质(CSPE),其中含有排列有序的含离子液体的HSNRs(F-ILs@HSNRs)。施加磁场促进了F-ILs@HSNRs在CSPE中的均匀分散和取向。F-ILs@HSNRs的加入降低了PEO的结晶度,并在F-ILs@HSNRs/PEO界面形成了锂传输通道。计算和多物理场模拟表明,F-ILs@HSNRs中的离子液体对锂离子传导贡献最大,其次是F-ILs@HSNRs/PEO界面。当F-ILs@HSNRs垂直于电极排列时,CSPE表现出最短的锂迁移路径,从而实现稳定且高效的锂离子传导。与具有随机排列或平行排列的F-ILs@HSNRs的CSPE相比,其电导率(2.14×10 S cm)和锂离子迁移数t(0.307)最高,分别比PEO-LiTFSI高125倍和184%。此外,锂|CSPE|锂电池和磷酸铁锂|CSPE|锂电池可稳定循环超过2000小时,库仑效率接近100%。倍率性能测试也证实了其优异的电化学可逆性。