Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France.
Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Rouen, France.
Eur J Hum Genet. 2021 Jan;29(1):99-109. doi: 10.1038/s41431-020-0672-2. Epub 2020 Jun 26.
The detection of copy-number variations (CNVs) from NGS data is underexploited as chip-based or targeted techniques are still commonly used. We assessed the performances of a workflow centered on CANOES, a bioinformatics tool based on read depth information. We applied our workflow to gene panel (GP) and whole-exome sequencing (WES) data, and compared CNV calls to quantitative multiplex PCR of short fluorescent fragments (QMSPF) or array comparative genomic hybridization (aCGH) results. From GP data of 3776 samples, we reached an overall positive predictive value (PPV) of 87.8%. This dataset included a complete comprehensive QMPSF comparison of four genes (60 exons) on which we obtained 100% sensitivity and specificity. From WES data, we first compared 137 samples with aCGH and filtered comparable events (exonic CNVs encompassing enough aCGH probes) and obtained an 87.25% sensitivity. The overall PPV was 86.4% following the targeted confirmation of candidate CNVs from 1056 additional WES. In addition, our CANOES-centered workflow on WES data allowed the detection of CNVs with a resolution of single exons, allowing the detection of CNVs that were missed by aCGH. Overall, switching to an NGS-only approach should be cost-effective as it allows a reduction in overall costs together with likely stable diagnostic yields. Our bioinformatics pipeline is available at: https://gitlab.bioinfo-diag.fr/nc4gpm/canoes-centered-workflow .
从 NGS 数据中检测拷贝数变异 (CNV) 的方法尚未得到充分利用,因为基于芯片或靶向的技术仍然很常见。我们评估了以 CANOES 为中心的工作流程的性能,CANOES 是一种基于读取深度信息的生物信息学工具。我们将我们的工作流程应用于基因面板 (GP) 和全外显子组测序 (WES) 数据,并将 CNV 调用与短荧光片段定量多重 PCR (QMSPF) 或阵列比较基因组杂交 (aCGH) 结果进行比较。从 3776 个样本的 GP 数据中,我们达到了 87.8%的总体阳性预测值 (PPV)。该数据集包括对四个基因 (60 个外显子) 的完整综合 QMPSF 比较,我们在这些基因上获得了 100%的灵敏度和特异性。从 WES 数据开始,我们首先将 137 个样本与 aCGH 进行了比较,并过滤了可比事件 (包含足够 aCGH 探针的外显子 CNV),获得了 87.25%的灵敏度。在对 1056 个额外的 WES 样本中的候选 CNV 进行有针对性的确认后,总体 PPV 为 86.4%。此外,我们基于 WES 数据的 CANOES 为中心的工作流程允许检测分辨率为单个外显子的 CNV,从而能够检测到 aCGH 错过的 CNV。总体而言,转向仅使用 NGS 的方法应该具有成本效益,因为它可以降低总体成本,同时可能保持稳定的诊断产量。我们的生物信息学管道可在以下网址获得:https://gitlab.bioinfo-diag.fr/nc4gpm/canoes-centered-workflow。