Suppr超能文献

基于动态对比增强 MRI 纹理分析的垂体大腺瘤术前血管异质性和侵袭性评估。

Preoperative vascular heterogeneity and aggressiveness assessment of pituitary macroadenoma based on dynamic contrast-enhanced MRI texture analysis.

机构信息

Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, 116000, China.

Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, 116000, China.

出版信息

Eur J Radiol. 2020 Aug;129:109125. doi: 10.1016/j.ejrad.2020.109125. Epub 2020 Jun 13.

Abstract

PURPOSE

To assess the vascular heterogeneity and aggressiveness of pituitary macroadenomas (PM) using texture analysis based on Dynamic Contrast-Enhanced MRI (DCE-MRI).

METHOD

Fifty patients with pathologically confirmed PM, including 32 patients with aggressive PM (aggressive group) and 18 patients with non-aggressive PM (non-aggressive group), were included in this study. The preoperative DCE-MRI and clinical data were collected from all patients. The features based on Ktrans, Ve, and Kep were generated using Omni-Kinetics software. Independent-samples t-test and Mann-Whitney U test were used for comparison between two groups. Logistic regression analysis was used to determine the optimal model for distinguishing aggressive and non-aggressive PM.

RESULTS

Six features related to tumor morphology, 24 features in Ktrans, 20 features in Ve, and 3 features in Kep were significantly different between the aggressive and non-aggressive groups. Volume count, gray-level non-uniformity in Ktrans, voxel value sum in Ve and run-length non-uniformity in Kep (AUC = 0.816, 0.903, 0.785, 0.813) were considered the best feature for tumor diagnosis. After modeling, the diagnosis efficiency of mean model and total model was desirable (AUC = 0.859 and 0.957), and the diagnostic efficiency of morphological, Ktrans, Ve and Kep features model was improved (AUC = 0.845, 0.951, 0.847, 0.804).

CONCLUSIONS

Texture analysis based on DCE-MRI elucidates the vascular heterogeneity and aggressiveness of pituitary adenoma. The total model could be used as a new noninvasive method for predicting the aggressiveness of pituitary macroadenoma.

摘要

目的

利用基于动态对比增强磁共振成像(DCE-MRI)的纹理分析评估垂体大腺瘤(PM)的血管异质性和侵袭性。

方法

本研究纳入了 50 例经病理证实的 PM 患者,其中 32 例为侵袭性 PM(侵袭组),18 例为非侵袭性 PM(非侵袭组)。所有患者均采集术前 DCE-MRI 及临床资料。使用 Omni-Kinetics 软件生成基于 Ktrans、Ve 和 Kep 的特征。采用独立样本 t 检验和 Mann-Whitney U 检验比较两组间差异。采用 Logistic 回归分析确定鉴别侵袭性和非侵袭性 PM 的最佳模型。

结果

侵袭组和非侵袭组之间肿瘤形态相关的 6 个特征、Ktrans 中的 24 个特征、Ve 中的 20 个特征和 Kep 中的 3 个特征存在显著差异。容积计数、Ktrans 中的灰度不均匀性、Ve 中的体素值总和和 Kep 中的游程长度不均匀性(AUC=0.816、0.903、0.785、0.813)被认为是肿瘤诊断的最佳特征。建模后,均值模型和总模型的诊断效能均较为理想(AUC=0.859 和 0.957),形态学、Ktrans、Ve 和 Kep 特征模型的诊断效能得到提高(AUC=0.845、0.951、0.847、0.804)。

结论

基于 DCE-MRI 的纹理分析可以阐明垂体腺瘤的血管异质性和侵袭性。总模型可作为一种新的预测垂体大腺瘤侵袭性的非侵入性方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验