Suppr超能文献

通过活检数字病理图像特征预测局部晚期直肠癌新辅助放化疗的治疗反应

Predicting treatment response to neoadjuvant chemoradiotherapy in local advanced rectal cancer by biopsy digital pathology image features.

作者信息

Zhang Fang, Yao Su, Li Zhi, Liang Changhong, Zhao Ke, Huang Yanqi, Gao Ying, Qu Jinrong, Li Zhenhui, Liu Zaiyi

机构信息

School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China.

Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.

出版信息

Clin Transl Med. 2020 Jun;10(2):e110. doi: 10.1002/ctm2.110. Epub 2020 Jun 28.

Abstract

Quantitative features extracted from biopsy digital pathology images can provide predictive information for neoadjuvant chemoradiotherapy (nCRT) in local advanced rectal cancer (LARC) Machine learning technologies are applied to build the digital-pathology-based pathology signature The pathology signature is an independent predictor of treatment response to nCRT in LARC.

摘要

从活检数字病理图像中提取的定量特征可为局部晚期直肠癌(LARC)的新辅助放化疗(nCRT)提供预测信息。机器学习技术被应用于构建基于数字病理的病理特征。该病理特征是LARC中nCRT治疗反应的独立预测指标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验