Konwar Gayatri, Sarma Saurav Ch, Mahanta Debajyoti, Peter Sebastian C
Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
ACS Omega. 2020 Jun 15;5(24):14494-14501. doi: 10.1021/acsomega.0c01158. eCollection 2020 Jun 23.
In this study, we report an enormously simple green approach for the synthesis of polyaniline hybrid (PANI-SO) nanofibers in emeraldine salt form. We have carried out the synthesis via an interfacial polymerization method using vegetable oil as an organic phase instead of the commonly used solvents like CHCl, CCl, etc. Characterization techniques such as Fourier transform infrared (FTIR), UV-visible, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) have been used for studying the synthesized polyaniline hybrid nanofibers. An interesting observation is the crystallization of small organic molecules in the PANI matrix. PANI-SO shows a pseudocapacitance behavior with a capacitance value of 302 F g at a current density of 1 A g. In addition, the material shows an energy density of 26.8 W h kg and a maximum power density of 402.6 W kg. Furthermore, the PANI-SO electrode maintains about 84% of the initial capacitance after 1000 cycles. Similarly, the PANI-SO symmetric solid-state supercapacitor shows an areal capacitance of 118.7 mF cm and retains a stability of 80% even after 1000 cycles. Thus, the PANI-SO electrode shows a good cyclic performance, which implies the structural stability of PANI-SO nanofibers. The electrochemical properties of PANI-SO are compared with those of PANI nanofibers synthesized by taking CHCl as the organic phase and keeping all other parameters identical. PANI-SO is observed to be a superior material compared to the latter one. All electrochemical analyses show that the PANI synthesized using cooking soyabean oil (PANI-SO) is an effective supercapacitor material.
在本研究中,我们报道了一种极其简单的绿色方法来合成翡翠盐形式的聚苯胺杂化(PANI-SO)纳米纤维。我们通过界面聚合法进行合成,使用植物油作为有机相,而非常用的溶剂如CHCl、CCl等。傅里叶变换红外光谱(FTIR)、紫外可见光谱、粉末X射线衍射(PXRD)、扫描电子显微镜(SEM)、热重分析(TGA)和差示扫描量热法(DSC)等表征技术已被用于研究合成的聚苯胺杂化纳米纤维。一个有趣的发现是小有机分子在聚苯胺基质中结晶。PANI-SO在1 A g的电流密度下表现出赝电容行为,电容值为302 F g。此外,该材料的能量密度为26.8 W h kg,最大功率密度为402.6 W kg。此外,PANI-SO电极在1000次循环后保持约84%的初始电容。同样,PANI-SO对称固态超级电容器的面积电容为118.7 mF cm,即使在1000次循环后仍保持80%的稳定性。因此,PANI-SO电极表现出良好的循环性能,这意味着PANI-SO纳米纤维的结构稳定性。将PANI-SO的电化学性能与以CHCl为有机相并保持所有其他参数相同合成的聚苯胺纳米纤维的电化学性能进行了比较。观察到PANI-SO是比后者更优异的材料。所有电化学分析表明,使用烹饪大豆油合成的聚苯胺(PANI-SO)是一种有效的超级电容器材料。