Sugunan Anjali, Anil Syamala Aiswarya, Radhakrishnan Athul Beena, Menamparambath Mini Mol
Department of Chemistry, National Institute of Technology Calicut Calicut 673601 Kerala India
Nanoscale Adv. 2025 Jul 8. doi: 10.1039/d5na00374a.
The liquid/liquid (L/L) interface-assisted polymerisation technique, unlike bulk or single-phase polymerisation, has the potential to offer effective control of the self-assembly and diffusion of reactive intermediates and versatile tuning of the morphology at the interface to allow tailored properties within the functional nanostructures. This study adopts an L/L interface-assisted polymerisation approach to generate TiCT MXene/PANI with enhanced electrochemical characteristics. The aniline released at the L/L interface in a controlled manner interacts with the inherent negative charge of MXene, initiating an polymerisation of PANI over the surface and interlayers of MXene to yield hydrophilic MXene/PANI nanostructures. Furthermore, their electrochemical properties are notably enhanced compared to those of hybrid structures formed single-phase polymerisation. The comprehensive research demonstrated that MXene/PANI formed at the L/L interface resulted in better exfoliation of the MXene due to the integration of fibrillar natured PANI, whereas the MXene was encased by aggregated PANI structures during single-phase polymerisation. The advancement of reactant consumption and product formation in the corresponding organic/aqueous phases was monitored using UV-visible spectroscopy, indicating controlled polymerisation at the L/L interface. The controlled release of reactants interface circumvents side products or undesirable side-chain branching reactions, leading to the generation of long-chain polymers. The successful intercalation of PANI into the interlayers of MXene was evident from physicochemical investigations such as Raman, XRD, SEM, and HRTEM. The MXene/PANI composites generated by L/L interface-assisted polymerisation offered excellent electrochemical performance compared to the single-phase polymerisation method. Ultimately, the synthesised nanohybrid TiCT MXene/PANI-modified GCE demonstrates enhanced non-enzymatic DA sensing capabilities with a detection limit of 34 nM.
与本体聚合或单相聚合不同,液/液(L/L)界面辅助聚合技术有潜力有效控制反应中间体的自组装和扩散,并在界面处对形态进行多功能调节,从而使功能纳米结构具有定制的性能。本研究采用L/L界面辅助聚合方法来制备具有增强电化学特性的TiCT MXene/PANI。在L/L界面以可控方式释放的苯胺与MXene固有的负电荷相互作用,引发PANI在MXene的表面和层间进行聚合,从而产生亲水性的MXene/PANI纳米结构。此外,与通过单相聚合形成的杂化结构相比,它们的电化学性能显著增强。综合研究表明,在L/L界面形成的MXene/PANI由于纤维状PANI的整合而使MXene具有更好的剥离效果,而在单相聚合过程中,MXene被聚集的PANI结构包裹。使用紫外-可见光谱监测相应有机相/水相中反应物消耗和产物形成的进展,表明在L/L界面发生了可控聚合。反应物在界面处的可控释放避免了副产物或不期望的侧链支化反应,从而生成了长链聚合物。从拉曼光谱、X射线衍射、扫描电子显微镜和高分辨率透射电子显微镜等物理化学研究中可以明显看出PANI成功插入到MXene的层间。与单相聚合方法相比,通过L/L界面辅助聚合生成的MXene/PANI复合材料具有优异的电化学性能。最终,合成的纳米杂化TiCT MXene/PANI修饰玻碳电极展现出增强的非酶促多巴胺传感能力,检测限为34 nM。