Suppr超能文献

磁共振指纹成像:从发展到临床应用。

Magnetic resonance fingerprinting: from evolution to clinical applications.

机构信息

Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore, Singapore.

Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia.

出版信息

J Med Radiat Sci. 2020 Dec;67(4):333-344. doi: 10.1002/jmrs.413. Epub 2020 Jun 28.

Abstract

In 2013, Magnetic Resonance Fingerprinting (MRF) emerged as a method for fast, quantitative Magnetic Resonance Imaging. This paper reviews the current status of MRF up to early 2020 and aims to highlight the advantages MRF can offer medical imaging professionals. By acquiring scan data as pseudorandom samples, MRF elicits a unique signal evolution, or 'fingerprint', from each tissue type. It matches 'randomised' free induction decay acquisitions against pre-computed simulated tissue responses to generate a set of quantitative images of T , T and proton density (PD) with co-registered voxels, rather than as traditional relative T - and T -weighted images. MRF numeric pixel values retain accuracy and reproducibility between 2% and 8%. MRF acquisition is robust to strong undersampling of k-space. Scan sequences have been optimised to suppress sub-sampling artefacts, while artificial intelligence and machine learning techniques have been employed to increase matching speed and precision. MRF promises improved patient comfort with reduced scan times and fewer image artefacts. Quantitative MRF data could be used to define population-wide numeric biomarkers that classify normal versus diseased tissue. Certification of clinical centres for MRF scan repeatability would permit numeric comparison of sequential images for any individual patient and the pooling of multiple patient images across large, cross-site imaging studies. MRF has to date shown promising results in early clinical trials, demonstrating reliable differentiation between malignant and benign prostate conditions, and normal and sclerotic hippocampal tissue. MRF is now undergoing small-scale trials at several sites across the world; moving it closer to routine clinical application.

摘要

2013 年,磁共振指纹成像(MRF)作为一种快速、定量磁共振成像方法出现。本文回顾了截至 2020 年初 MRF 的现状,旨在强调 MRF 可以为医学成像专业人员提供的优势。通过采集伪随机样本的扫描数据,MRF 从每种组织类型中引出独特的信号演化或“指纹”。它将“随机”自由感应衰减采集与预先计算的模拟组织响应进行匹配,以生成一组具有共配准体素的 T 、 T 和质子密度(PD)定量图像,而不是传统的相对 T -和 T -加权图像。MRF 数字像素值在 2%至 8%之间保持准确性和可重复性。MRF 采集对 k 空间的强欠采样具有鲁棒性。扫描序列已针对亚采样伪影进行了优化,同时还采用了人工智能和机器学习技术来提高匹配速度和精度。MRF 有望通过减少扫描时间和减少图像伪影来提高患者舒适度。定量 MRF 数据可用于定义人群范围的数字生物标志物,将正常组织与患病组织区分开来。对 MRF 扫描重复性进行临床中心认证将允许对任何个体患者的连续图像进行数值比较,并允许在大型跨站点成像研究中对多个患者的图像进行汇总。迄今为止,MRF 在早期临床试验中显示出有希望的结果,可靠地区分了恶性和良性前列腺病变以及正常和硬化海马组织。MRF 目前正在全球多个地点进行小规模试验,使其更接近常规临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5425/7754037/07e9523f0f6e/JMRS-67-333-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验