Suppr超能文献

用于快速磁共振指纹组织特性定量的机器学习

Machine Learning for Rapid Magnetic Resonance Fingerprinting Tissue Property Quantification.

作者信息

Hamilton Jesse I, Seiberlich Nicole

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA, and the Department of Radiology, University of Michigan, Ann Arbor, MI 48109.

Department of Biomedical Engineering and the Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106 USA, the Department of Radiology and Cardiology, University Hospitals, Cleveland, OH 44106 USA, and the Department of Radiology, University of Michigan, Ann Arbor, MI 48109.

出版信息

Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):69-85. doi: 10.1109/JPROC.2019.2936998. Epub 2019 Sep 11.

Abstract

Magnetic Resonance Fingerprinting (MRF) is an MRI-based method that can provide quantitative maps of multiple tissue properties simultaneously from a single rapid acquisition. Tissue property maps are generated by matching the complex signal evolutions collected at the scanner to a dictionary of signals derived using Bloch equation simulations. However, in some circumstances, the process of dictionary generation and signal matching can be time-consuming, reducing the utility of this technique. Recently, several groups have proposed using machine learning to accelerate the extraction of quantitative maps from MRF data. This article will provide an overview of current research that combines MRF and machine learning, as well as present original research demonstrating how machine learning can speed up dictionary generation for cardiac MRF.

摘要

磁共振指纹识别(MRF)是一种基于磁共振成像(MRI)的方法,它能够通过单次快速采集同时提供多种组织特性的定量图谱。组织特性图谱是通过将在扫描仪处采集到的复杂信号演变与使用布洛赫方程模拟得出的信号字典进行匹配而生成的。然而,在某些情况下,字典生成和信号匹配的过程可能会很耗时,从而降低了这项技术的实用性。最近,几个研究小组提出使用机器学习来加速从MRF数据中提取定量图谱。本文将概述当前将MRF与机器学习相结合的研究,同时展示原创研究,说明机器学习如何能够加快心脏MRF的字典生成。

相似文献

1
Machine Learning for Rapid Magnetic Resonance Fingerprinting Tissue Property Quantification.
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):69-85. doi: 10.1109/JPROC.2019.2936998. Epub 2019 Sep 11.
4
High-resolution 3D MR Fingerprinting using parallel imaging and deep learning.
Neuroimage. 2020 Feb 1;206:116329. doi: 10.1016/j.neuroimage.2019.116329. Epub 2019 Nov 2.
5
Real-Time Mapping of Tissue Properties for Magnetic Resonance Fingerprinting.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12906:161-170. doi: 10.1007/978-3-030-87231-1_16. Epub 2021 Sep 21.
6
Artificial intelligence in cardiac magnetic resonance fingerprinting.
Front Cardiovasc Med. 2022 Sep 20;9:1009131. doi: 10.3389/fcvm.2022.1009131. eCollection 2022.
7
Deep Learning for Fast and Spatially-Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF).
Mach Learn Med Imaging. 2018 Sep;11046:398-405. doi: 10.1007/978-3-030-00919-9_46. Epub 2018 Sep 15.
8
Magnetic resonance fingerprinting with dictionary-based fat and water separation (DBFW MRF): A multi-component approach.
Magn Reson Med. 2019 May;81(5):3032-3045. doi: 10.1002/mrm.27628. Epub 2018 Dec 21.
9
An Accurate Dictionary Creation Method for MR Fingerprinting Using a Fast Bloch Simulator.
Magn Reson Med Sci. 2020 Aug 3;19(3):247-253. doi: 10.2463/mrms.tn.2018-0157. Epub 2019 Jun 20.
10
Magnetic Resonance Fingerprinting - a promising new approach to obtain standardized imaging biomarkers from MRI.
Insights Imaging. 2015 Apr;6(2):163-5. doi: 10.1007/s13244-015-0403-3. Epub 2015 Mar 24.

引用本文的文献

1
Contrastive Learning for Accelerated MR Fingerprinting.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2025 May;33.
2
Neural networks with personalized training for improved MOLLI T mapping.
BMC Med Imaging. 2025 Jul 1;25(1):245. doi: 10.1186/s12880-025-01769-z.
5
Whole pancreas water T mapping at 3 Tesla.
MAGMA. 2025 Apr;38(2):271-283. doi: 10.1007/s10334-025-01224-8. Epub 2025 Mar 6.
8
Joint MAPLE: Accelerated joint T and mapping with scan-specific self-supervised networks.
Magn Reson Med. 2024 Jun;91(6):2294-2309. doi: 10.1002/mrm.29989. Epub 2024 Jan 5.
9
Cardiac MR Fingerprinting: Overview, Technical Developments, and Applications.
J Magn Reson Imaging. 2024 Nov;60(5):1753-1773. doi: 10.1002/jmri.29206. Epub 2023 Dec 28.
10
Motion-compensated T mapping in cardiovascular magnetic resonance imaging: a technical review.
Front Cardiovasc Med. 2023 Sep 8;10:1160183. doi: 10.3389/fcvm.2023.1160183. eCollection 2023.

本文引用的文献

1
Multi-site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T.
Neuroimage. 2019 Jul 15;195:362-372. doi: 10.1016/j.neuroimage.2019.03.047. Epub 2019 Mar 25.
2
Repeatability and reproducibility of 3D MR fingerprinting relaxometry measurements in normal breast tissue.
J Magn Reson Imaging. 2019 Oct;50(4):1133-1143. doi: 10.1002/jmri.26717. Epub 2019 Mar 20.
3
Deep Learning for Fast and Spatially Constrained Tissue Quantification From Highly Accelerated Data in Magnetic Resonance Fingerprinting.
IEEE Trans Med Imaging. 2019 Oct;38(10):2364-2374. doi: 10.1109/TMI.2019.2899328. Epub 2019 Feb 13.
4
Magnetic resonance fingerprinting with dictionary-based fat and water separation (DBFW MRF): A multi-component approach.
Magn Reson Med. 2019 May;81(5):3032-3045. doi: 10.1002/mrm.27628. Epub 2018 Dec 21.
5
Simultaneous multislice cardiac magnetic resonance fingerprinting using low rank reconstruction.
NMR Biomed. 2019 Feb;32(2):e4041. doi: 10.1002/nbm.4041. Epub 2018 Dec 18.
6
Magnetic resonance fingerprinting with quadratic RF phase for measurement of T simultaneously with δ , T , and T.
Magn Reson Med. 2019 Mar;81(3):1849-1862. doi: 10.1002/mrm.27543. Epub 2018 Oct 30.
7
Cartesian MR fingerprinting in the eye at 7T using compressed sensing and matrix completion-based reconstructions.
Magn Reson Med. 2019 Apr;81(4):2551-2565. doi: 10.1002/mrm.27594. Epub 2018 Nov 13.
8
Three-dimensional MR Fingerprinting for Quantitative Breast Imaging.
Radiology. 2019 Jan;290(1):33-40. doi: 10.1148/radiol.2018180836. Epub 2018 Oct 30.
9
Magnetic Resonance Fingerprinting Using a Fast Dictionary Searching Algorithm: MRF-ZOOM.
IEEE Trans Biomed Eng. 2019 Jun;66(6):1526-1535. doi: 10.1109/TBME.2018.2874992. Epub 2018 Oct 9.
10
Investigating and reducing the effects of confounding factors for robust T and T mapping with cardiac MR fingerprinting.
Magn Reson Imaging. 2018 Nov;53:40-51. doi: 10.1016/j.mri.2018.06.018. Epub 2018 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验