Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.
Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.
EMBO J. 2018 Dec 14;37(24). doi: 10.15252/embj.201899649. Epub 2018 Nov 5.
Optogenetic tools, providing non-invasive control over selected cells, have the potential to revolutionize sensory prostheses for humans. Optogenetic stimulation of spiral ganglion neurons (SGNs) in the ear provides a future alternative to electrical stimulation used in cochlear implants. However, most channelrhodopsins do not support the high temporal fidelity pertinent to auditory coding because they require milliseconds to close after light-off. Here, we biophysically characterized the fast channelrhodopsin Chronos and revealed a deactivation time constant of less than a millisecond at body temperature. In order to enhance neural expression, we improved its trafficking to the plasma membrane (Chronos-ES/TS). Following efficient transduction of SGNs using early postnatal injection of the adeno-associated virus AAV-PHPB into the mouse cochlea, fiber-based optical stimulation elicited optical auditory brainstem responses (oABR) with minimal latencies of 1 ms, thresholds of 5 μJ and 100 μs per pulse, and sizable amplitudes even at 1,000 Hz of stimulation. Recordings from single SGNs demonstrated good temporal precision of light-evoked spiking. In conclusion, efficient virus-mediated expression of targeting-optimized Chronos-ES/TS achieves ultrafast optogenetic control of neurons.
光遗传学工具提供了对选定细胞的非侵入性控制,有可能彻底改变人类的感觉假体。对耳朵中的螺旋神经节神经元 (SGN) 的光遗传学刺激为耳蜗植入中使用的电刺激提供了未来的替代方案。然而,大多数通道蛋白不支持与听觉编码相关的高时间保真度,因为它们在关闭后需要几毫秒才能关闭。在这里,我们对快速通道蛋白 Chronos 进行了生物物理特性表征,并在体温下发现其失活时间常数小于一毫秒。为了增强神经表达,我们改进了其向质膜的运输(Chronos-ES/TS)。通过在早期产后将腺相关病毒 AAV-PHPB 注射到小鼠耳蜗中进行 SGN 的有效转导后,基于纤维的光刺激引发了具有最小潜伏期为 1ms 的光听觉脑干反应 (oABR),阈值为 5μJ 和 100μs 脉冲,即使在 1000Hz 的刺激下也具有可观的振幅。单个 SGN 的记录表明光诱发的尖峰具有良好的时间精度。总之,靶向优化的 Chronos-ES/TS 的高效病毒介导表达实现了神经元的超快光遗传学控制。