Suppr超能文献

一种增强型 OCT 图像字幕系统,帮助眼科医生检测和分类眼病。

An enhanced OCT image captioning system to assist ophthalmologists in detecting and classifying eye diseases.

机构信息

Department of Information Technology, SSN College of Engineering, Anna University, Chennai, India.

Department of Electronics Engineering, MIT Campus, Anna University, Chennai, India.

出版信息

J Xray Sci Technol. 2020;28(5):975-988. doi: 10.3233/XST-200697.

Abstract

Human eye is affected by the different eye diseases including choroidal neovascularization (CNV), diabetic macular edema (DME) and age-related macular degeneration (AMD). This work aims to design an artificial intelligence (AI) based clinical decision support system for eye disease detection and classification to assist the ophthalmologists more effectively detecting and classifying CNV, DME and drusen by using the Optical Coherence Tomography (OCT) images depicting different tissues. The methodology used for designing this system involves different deep learning convolutional neural network (CNN) models and long short-term memory networks (LSTM). The best image captioning model is selected after performance analysis by comparing nine different image captioning systems for assisting ophthalmologists to detect and classify eye diseases. The quantitative data analysis results obtained for the image captioning models designed using DenseNet201 with LSTM have superior performance in terms of overall accuracy of 0.969, positive predictive value of 0.972 and true-positive rate of 0.969using OCT images enhanced by the generative adversarial network (GAN). The corresponding performance values for the Xception with LSTM image captioning models are 0.969, 0.969 and 0.938, respectively. Thus, these two models yield superior performance and have potential to assist ophthalmologists in making optimal diagnostic decision.

摘要

人类眼睛易受到多种眼部疾病的影响,包括脉络膜新生血管(CNV)、糖尿病性黄斑水肿(DME)和年龄相关性黄斑变性(AMD)等。本工作旨在设计一种基于人工智能(AI)的临床决策支持系统,用于眼部疾病的检测和分类,以帮助眼科医生更有效地通过描绘不同组织的光学相干断层扫描(OCT)图像来检测和分类 CNV、DME 和玻璃膜疣。设计该系统所使用的方法学涉及不同的深度卷积神经网络(CNN)模型和长短期记忆网络(LSTM)。通过比较九种不同的图像字幕生成系统,分析性能后选择最佳的图像字幕生成模型,以协助眼科医生检测和分类眼部疾病。使用生成对抗网络(GAN)增强的 OCT 图像设计的基于 DenseNet201 和 LSTM 的图像字幕生成模型的整体准确率、阳性预测值和真阳性率分别高达 0.969、0.972 和 0.969。基于 Xception 和 LSTM 的图像字幕生成模型的相应性能值分别为 0.969、0.969 和 0.938。因此,这两种模型的性能表现出色,具有辅助眼科医生做出最佳诊断决策的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验