Suppr超能文献

通过深度学习识别与人类对比敏感度相关的视网膜层。

Identifying the Retinal Layers Linked to Human Contrast Sensitivity Via Deep Learning.

机构信息

Department of Psychology, Northeastern University, Boston, Massachusetts, United States.

Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States.

出版信息

Invest Ophthalmol Vis Sci. 2022 Feb 1;63(2):27. doi: 10.1167/iovs.63.2.27.

Abstract

PURPOSE

Luminance contrast is the fundamental building block of human spatial vision. Therefore contrast sensitivity, the reciprocal of contrast threshold required for target detection, has been a barometer of human visual function. Although retinal ganglion cells (RGCs) are known to be involved in contrast coding, it still remains unknown whether the retinal layers containing RGCs are linked to a person's contrast sensitivity (e.g., Pelli-Robson contrast sensitivity) and, if so, to what extent the retinal layers are related to behavioral contrast sensitivity. Thus the current study aims to identify the retinal layers and features critical for predicting a person's contrast sensitivity via deep learning.

METHODS

Data were collected from 225 subjects including individuals with either glaucoma, age-related macular degeneration, or normal vision. A deep convolutional neural network trained to predict a person's Pelli-Robson contrast sensitivity from structural retinal images measured with optical coherence tomography was used. Then, activation maps that represent the critical features learned by the network for the output prediction were computed.

RESULTS

The thickness of both ganglion cell and inner plexiform layers, reflecting RGC counts, were found to be significantly correlated with contrast sensitivity (r = 0.26 ∼ 0.58, Ps < 0.001 for different eccentricities). Importantly, the results showed that retinal layers containing RGCs were the critical features the network uses to predict a person's contrast sensitivity (an average R2 = 0.36 ± 0.10).

CONCLUSIONS

The findings confirmed the structure and function relationship for contrast sensitivity while highlighting the role of RGC density for human contrast sensitivity.

摘要

目的

亮度对比是人类空间视觉的基本组成部分。因此,对比敏感度是目标检测所需对比阈值的倒数,一直是人类视觉功能的晴雨表。虽然已经知道视网膜神经节细胞(RGC)参与对比编码,但仍不清楚包含 RGC 的视网膜层与一个人的对比敏感度(例如,Pelli-Robson 对比敏感度)相关联,如果相关联,那么视网膜层与行为对比敏感度相关联的程度如何。因此,本研究旨在通过深度学习确定对预测个体对比敏感度至关重要的视网膜层和特征。

方法

从 225 名受试者中收集数据,包括青光眼、年龄相关性黄斑变性或正常视力的个体。使用经过训练可从光学相干断层扫描测量的结构视网膜图像预测个体 Pelli-Robson 对比敏感度的深度卷积神经网络。然后,计算代表网络为输出预测学习的关键特征的激活图。

结果

发现神经节细胞层和内丛状层的厚度,反映了 RGC 计数,与对比敏感度显著相关(不同偏心度的 r = 0.26 ∼ 0.58,P < 0.001)。重要的是,结果表明包含 RGC 的视网膜层是网络用于预测个体对比敏感度的关键特征(平均 R2 = 0.36 ± 0.10)。

结论

这些发现证实了对比敏感度的结构与功能关系,同时强调了 RGC 密度对人类对比敏感度的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c1/8859491/9e81a8b6fc80/iovs-63-2-27-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验