Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA.
Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA.
J Cell Biol. 2020 Sep 7;219(9). doi: 10.1083/jcb.202003091.
Cell migration is driven by pushing and pulling activities of the actin cytoskeleton, but migration directionality is largely controlled by microtubules. This function of microtubules is especially critical for neuron navigation. However, the underlying mechanisms are poorly understood. Here we show that branched actin filament networks, the main pushing machinery in cells, grow directly from microtubule tips toward the leading edge in growth cones of hippocampal neurons. Adenomatous polyposis coli (APC), a protein with both tumor suppressor and cytoskeletal functions, concentrates at the microtubule-branched network interface, whereas APC knockdown nearly eliminates branched actin in growth cones and prevents growth cone recovery after repellent-induced collapse. Conversely, encounters of dynamic APC-positive microtubule tips with the cell edge induce local actin-rich protrusions. Together, we reveal a novel mechanism of cell navigation involving APC-dependent assembly of branched actin networks on microtubule tips.
细胞迁移是由肌动蛋白细胞骨架的推动和拉动活动驱动的,但迁移方向主要由微管控制。微管的这一功能对神经元的导航尤为关键。然而,其潜在的机制还不清楚。在这里,我们发现分支的肌动蛋白丝网络,即细胞中的主要推动机制,直接从微管尖端向海马神经元生长锥的前沿生长。腺瘤性结肠息肉病(APC)是一种具有肿瘤抑制和细胞骨架功能的蛋白质,集中在微管分支网络的界面上,而 APC 敲低几乎消除了生长锥中的分支肌动蛋白,并阻止了排斥物诱导的塌陷后生长锥的恢复。相反,动态 APC 阳性微管尖端与细胞边缘的接触会诱导局部富含肌动蛋白的突起。总的来说,我们揭示了一种新的细胞导航机制,涉及 APC 依赖性在微管尖端组装分支肌动蛋白网络。