Committee on Medical Physics, Department of Radiology, The University of Chicago, 5841 S Maryland Ave., Chicago, IL, MC202660637, USA.
Department of Physics, Wheaton College, Wheaton, IL, USA.
Sci Rep. 2020 Jun 29;10(1):10536. doi: 10.1038/s41598-020-67441-4.
Multiparametric magnetic resonance imaging (mpMRI) has been shown to improve radiologists' performance in the clinical diagnosis of breast cancer. This machine learning study develops a deep transfer learning computer-aided diagnosis (CADx) methodology to diagnose breast cancer using mpMRI. The retrospective study included clinical MR images of 927 unique lesions from 616 women. Each MR study included a dynamic contrast-enhanced (DCE)-MRI sequence and a T2-weighted (T2w) MRI sequence. A pretrained convolutional neural network (CNN) was used to extract features from the DCE and T2w sequences, and support vector machine classifiers were trained on the CNN features to distinguish between benign and malignant lesions. Three methods that integrate the sequences at different levels (image fusion, feature fusion, and classifier fusion) were investigated. Classification performance was evaluated using the receiver operating characteristic (ROC) curve and compared using the DeLong test. The single-sequence classifiers yielded areas under the ROC curves (AUCs) [95% confidence intervals] of AUC = 0.85 [0.82, 0.88] and AUC = 0.78 [0.75, 0.81]. The multiparametric schemes yielded AUC = 0.85 [0.82, 0.88], AUC = 0.87 [0.84, 0.89], and AUC = 0.86 [0.83, 0.88]. The feature fusion method statistically significantly outperformed using DCE alone (P < 0.001). In conclusion, the proposed deep transfer learning CADx method for mpMRI may improve diagnostic performance by reducing the false positive rate and improving the positive predictive value in breast imaging interpretation.
多参数磁共振成像(mpMRI)已被证明可提高放射科医生在乳腺癌临床诊断中的表现。这项机器学习研究开发了一种深度迁移学习计算机辅助诊断(CADx)方法,用于使用 mpMRI 诊断乳腺癌。这项回顾性研究纳入了 616 名女性 927 个独特病变的临床磁共振图像。每个磁共振研究均包括动态对比增强(DCE)-MRI 序列和 T2 加权(T2w)MRI 序列。使用预先训练的卷积神经网络(CNN)从 DCE 和 T2w 序列中提取特征,并在 CNN 特征上训练支持向量机分类器以区分良性和恶性病变。研究了在不同水平上整合序列的三种方法(图像融合、特征融合和分类器融合)。使用接收器工作特征(ROC)曲线评估分类性能,并使用 DeLong 检验进行比较。单序列分类器的 ROC 曲线下面积(AUC)[95%置信区间]分别为 AUC=0.85 [0.82, 0.88]和 AUC=0.78 [0.75, 0.81]。多参数方案的 AUC 分别为 AUC=0.85 [0.82, 0.88]、AUC=0.87 [0.84, 0.89]和 AUC=0.86 [0.83, 0.88]。特征融合方法在使用 DCE 时的性能显著优于单独使用 DCE(P<0.001)。总之,用于 mpMRI 的所提出的深度迁移学习 CADx 方法可以通过降低假阳性率和提高乳腺成像解释中的阳性预测值来提高诊断性能。