Department of Chemistry, Columbia University, New York, NY, USA.
Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
Nat Methods. 2020 Aug;17(8):844-851. doi: 10.1038/s41592-020-0883-z. Epub 2020 Jun 29.
Understanding metabolism is indispensable in unraveling the mechanistic basis of many physiological and pathological processes. However, in situ metabolic imaging tools are still lacking. Here we introduce a framework for mid-infrared (MIR) metabolic imaging by coupling the emerging high-information-throughput MIR microscopy with specifically designed IR-active vibrational probes. We present three categories of small vibrational tags including azide bond, C-edited carbonyl bond and deuterium-labeled probes to interrogate various metabolic activities in cells, small organisms and mice. Two MIR imaging platforms are implemented including broadband Fourier transform infrared microscopy and discrete frequency infrared microscopy with a newly incorporated spectral region (2,000-2,300 cm). Our technique is uniquely suited to metabolic imaging with high information throughput. In particular, we performed single-cell metabolic profiling including heterogeneity characterization, and large-area metabolic imaging at tissue or organ level with rich spectral information.
理解代谢对于揭示许多生理和病理过程的机制基础是必不可少的。然而,原位代谢成像工具仍然缺乏。在这里,我们通过将新兴的高信息量中红外(MIR)显微镜与专门设计的 IR 活性振动探针相结合,介绍了一种 MIR 代谢成像的框架。我们提出了包括叠氮键、C 编辑羰基键和氘标记探针在内的三类小振动标签,以检测细胞、小型生物和小鼠中的各种代谢活性。我们实现了两种 MIR 成像平台,包括宽带傅里叶变换红外显微镜和离散频率红外显微镜,以及新纳入的光谱区域(2000-2300cm)。我们的技术非常适合具有高信息吞吐量的代谢成像。特别是,我们进行了单细胞代谢分析,包括异质性特征描述,以及在组织或器官水平上进行具有丰富光谱信息的大面积代谢成像。