Petrov M, Canena D, Kulachenkov N, Kumar N, Nickmilder Pierre, Leclère Philippe, Sokolov Igor
Departments of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
Laboratory for Physics of Nanomaterials and Energy, Institute for Materials Science and Engineering, University of Mons, Mons, Belgium.
Mater Today (Kidlington). 2024 Nov;80:218-225. doi: 10.1016/j.mattod.2024.08.021. Epub 2024 Sep 13.
Here, we present a novel mechano-spectroscopic atomic force microscopy (AFM-MS) technique that overcomes the limitations of current spectroscopic methods by combining the high-resolution imaging capabilities of AFM with machine learning (ML) classification. AFM-MS employs AFM operating in sub-resonance tapping imaging mode, which enables the collection of multiple physical and mechanical property maps of a sample with sub-nanometer lateral resolution in a highly repeatable manner. By comparing these properties to a database of known materials, the technique identifies the location of constituent materials at each image pixel with the assistance of ML algorithms. We demonstrate AFM-MS on various material mixtures, achieving an unprecedented lateral spectroscopic resolution of 1.6 nm. This powerful approach opens new avenues for nanoscale material study, including the material identification and correlation of nanostructure with macroscopic material properties. The ability to map material composition with such high resolution will significantly advance the understanding and design of complex, nanostructured materials.
在此,我们展示了一种新颖的机械光谱原子力显微镜(AFM-MS)技术,该技术通过将原子力显微镜的高分辨率成像能力与机器学习(ML)分类相结合,克服了当前光谱方法的局限性。AFM-MS采用在亚共振轻敲成像模式下操作的原子力显微镜,这使得能够以高度可重复的方式收集具有亚纳米横向分辨率的样品的多个物理和机械性能图。通过将这些特性与已知材料的数据库进行比较,该技术在ML算法的辅助下识别每个图像像素处组成材料的位置。我们在各种材料混合物上展示了AFM-MS,实现了前所未有的1.6纳米横向光谱分辨率。这种强大的方法为纳米级材料研究开辟了新途径,包括材料识别以及纳米结构与宏观材料性能的关联。以如此高的分辨率绘制材料成分的能力将显著推进对复杂纳米结构材料的理解和设计。