Suppr超能文献

通过半监督学习改进内镜微观图像的多类别分类

Improving Multi-class Classification for Endomicroscopic Images by Semi-supervised Learning.

作者信息

Wu Hang, Tong Li, Wang May D

机构信息

Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.

出版信息

IEEE EMBS Int Conf Biomed Health Inform. 2017 Feb;2017. doi: 10.1109/bhi.2017.7897191. Epub 2017 Apr 13.

Abstract

Optical Endomicroscopy (OE) is a newly-emerged biomedical imaging modality that can help physicians make real-time clinical decisions about patients' grade of dysplasia. However, the performance of applying medical imaging classification for computer-aided diagnosis is primarily limited by the lack of labeled images. To improve the classification performance, we propose a semi-supervised learning algorithm that can incorporate large sets of unlabeled images. Our real-world endo-microscopic imaging datasets consist of 425 labeled images and 2,826 unlabeled ones. With semi-supervised learning algorithms, we improved multi-class classification performance over supervised learning algorithms by around 10% in all evaluation metrics, namely precision, recall, F1 score and Cohen-Kappa statistics.

摘要

光学内镜显微镜(OE)是一种新兴的生物医学成像方式,可帮助医生对患者的发育异常等级做出实时临床决策。然而,将医学影像分类应用于计算机辅助诊断的性能主要受限于缺乏标记图像。为了提高分类性能,我们提出了一种半监督学习算法,该算法可以纳入大量未标记图像。我们的真实世界内镜显微成像数据集由425张标记图像和2826张未标记图像组成。通过半监督学习算法,我们在所有评估指标(即精确率、召回率、F1分数和科恩卡帕统计量)上比监督学习算法将多类分类性能提高了约10%。

相似文献

1
Improving Multi-class Classification for Endomicroscopic Images by Semi-supervised Learning.通过半监督学习改进内镜微观图像的多类别分类
IEEE EMBS Int Conf Biomed Health Inform. 2017 Feb;2017. doi: 10.1109/bhi.2017.7897191. Epub 2017 Apr 13.
5
SemiBoost: boosting for semi-supervised learning.半增强算法:用于半监督学习的增强算法
IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):2000-14. doi: 10.1109/TPAMI.2008.235.
7
Semi-Supervised Disease Classification Based on Limited Medical Image Data.基于有限医学图像数据的半监督疾病分类。
IEEE J Biomed Health Inform. 2024 Mar;28(3):1575-1586. doi: 10.1109/JBHI.2024.3349412. Epub 2024 Mar 6.
10
Deep clustering for abdominal organ classification in ultrasound imaging.用于超声成像中腹部器官分类的深度聚类
J Med Imaging (Bellingham). 2023 May;10(3):034502. doi: 10.1117/1.JMI.10.3.034502. Epub 2023 May 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验