Dadoun Hind, Delingette Hervé, Rousseau Anne-Laure, de Kerviler Eric, Ayache Nicholas
Université Côte d'Azur, Inria Epione Team, Sophia Antipolis, Nice, France.
Hôpital Européen Georges Pompidou, NHance, Paris, France.
J Med Imaging (Bellingham). 2023 May;10(3):034502. doi: 10.1117/1.JMI.10.3.034502. Epub 2023 May 18.
The purpose of this study is to examine the utilization of unlabeled data for abdominal organ classification in multi-label (non-mutually exclusive classes) ultrasound images, as an alternative to the conventional transfer learning approach.
We present a new method for classifying abdominal organs in ultrasound images. Unlike previous approaches that only relied on labeled data, we consider the use of both labeled and unlabeled data. To explore this approach, we first examine the application of deep clustering for pretraining a classification model. We then compare two training methods, fine-tuning with labeled data through supervised learning and fine-tuning with both labeled and unlabeled data using semisupervised learning. All experiments were conducted on a large dataset of unlabeled images () and a small set of labeled images () comprising progressively 10%, 20%, 50%, and 100% of the images.
We show that for supervised fine-tuning, deep clustering is an effective pre-training method, with performance matching that of ImageNet pre-training using five times less labeled data. For semi-supervised learning, deep clustering pre-training also yields higher performance when the amount of labeled data is limited. Best performance is obtained with deep clustering pre-training combined with semi-supervised learning and 2742 labeled example images with an -score weighted average of 84.1%.
This method can be used as a tool to preprocess large unprocessed databases, thus reducing the need for prior annotations of abdominal ultrasound studies for the training of image classification algorithms, which in turn could improve the clinical use of ultrasound images.
本研究的目的是检验在多标签(非互斥类别)超声图像中利用未标记数据进行腹部器官分类,作为传统迁移学习方法的替代方法。
我们提出了一种在超声图像中对腹部器官进行分类的新方法。与以往仅依赖标记数据的方法不同,我们考虑同时使用标记数据和未标记数据。为了探索这种方法,我们首先研究深度聚类在预训练分类模型中的应用。然后,我们比较两种训练方法,即通过监督学习对标记数据进行微调,以及使用半监督学习对标记数据和未标记数据进行微调。所有实验均在一个由未标记图像组成的大型数据集()和一小部分标记图像()上进行,这些标记图像分别占图像总数的10%、20%、50%和100%。
我们表明,对于监督微调,深度聚类是一种有效的预训练方法,其性能与使用少五倍标记数据的ImageNet预训练相当。对于半监督学习,当标记数据量有限时,深度聚类预训练也能产生更高的性能。通过深度聚类预训练结合半监督学习和2742个标记示例图像,获得了最佳性能,得分加权平均值为84.1%。
该方法可作为预处理大量未处理数据库的工具,从而减少腹部超声研究训练图像分类算法时对先验注释的需求,进而改善超声图像的临床应用。