Suppr超能文献

UKSSL:用于医学图像分类的基于基础知识的半监督学习

UKSSL: Underlying Knowledge Based Semi-Supervised Learning for Medical Image Classification.

作者信息

Ren Zeyu, Kong Xiangyu, Zhang Yudong, Wang Shuihua

机构信息

University of Leicester LE1 7RH Leicester U.K.

出版信息

IEEE Open J Eng Med Biol. 2023 Aug 15;5:459-466. doi: 10.1109/OJEMB.2023.3305190. eCollection 2024.

Abstract

Deep learning techniques have made significant progress in medical image analysis. However, obtaining ground truth labels for unlabeled medical images is challenging as they often outnumber labeled images. Thus, training a high-performance model with limited labeled data has become a crucial challenge. This study introduces an underlying knowledge-based semi-supervised framework called UKSSL, consisting of two components: MedCLR extracts feature representations from the unlabeled dataset; UKMLP utilizes the representation and fine-tunes it with the limited labeled dataset to classify the medical images. UKSSL evaluates on the LC25000 and BCCD datasets, using only 50% labeled data. It gets precision, recall, F1-score, and accuracy of 98.9% on LC25000 and 94.3%, 94.5%, 94.3%, and 94.1% on BCCD, respectively. These results outperform other supervised-learning methods using 100% labeled data. The UKSSL can efficiently extract underlying knowledge from the unlabeled dataset and perform better using limited labeled medical images.

摘要

深度学习技术在医学图像分析方面取得了重大进展。然而,为未标记的医学图像获取真实标签具有挑战性,因为未标记图像的数量通常超过标记图像。因此,用有限的标记数据训练高性能模型已成为一项关键挑战。本研究引入了一个名为UKSSL的基于潜在知识的半监督框架,它由两个组件组成:MedCLR从未标记数据集中提取特征表示;UKMLP利用该表示并用有限的标记数据集对其进行微调,以对医学图像进行分类。UKSSL仅使用50%的标记数据在LC25000和BCCD数据集上进行评估。它在LC25000上的精确率、召回率、F1分数和准确率分别为98.9%,在BCCD上分别为94.3%、94.5%、94.3%和94.1%。这些结果优于使用100%标记数据的其他监督学习方法。UKSSL可以有效地从未标记数据集中提取潜在知识,并使用有限的标记医学图像表现得更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06c4/11186655/72cae0d56196/zhang1-3305190.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验