Suppr超能文献

定量风险评估:建立二项剂量反应不确定性的贝叶斯方法。

Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose-Response Uncertainty.

机构信息

Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Washington, DC, USA.

出版信息

Risk Anal. 2020 Sep;40(9):1706-1722. doi: 10.1111/risa.13537. Epub 2020 Jun 29.

Abstract

Model averaging for dichotomous dose-response estimation is preferred to estimate the benchmark dose (BMD) from a single model, but challenges remain regarding implementing these methods for general analyses before model averaging is feasible to use in many risk assessment applications, and there is little work on Bayesian methods that include informative prior information for both the models and the parameters of the constituent models. This article introduces a novel approach that addresses many of the challenges seen while providing a fully Bayesian framework. Furthermore, in contrast to methods that use Monte Carlo Markov Chain, we approximate the posterior density using maximum a posteriori estimation. The approximation allows for an accurate and reproducible estimate while maintaining the speed of maximum likelihood, which is crucial in many applications such as processing massive high throughput data sets. We assess this method by applying it to empirical laboratory dose-response data and measuring the coverage of confidence limits for the BMD. We compare the coverage of this method to that of other approaches using the same set of models. Through the simulation study, the method is shown to be markedly superior to the traditional approach of selecting a single preferred model (e.g., from the U.S. EPA BMD software) for the analysis of dichotomous data and is comparable or superior to the other approaches.

摘要

模型平均法常用于从单一模型中估计二项剂量-反应,以便在模型平均法可用于许多风险评估应用之前,对一般分析实施这些方法。但是,在包括模型和组成模型参数的先验信息的贝叶斯方法方面,仍然存在一些挑战。本文介绍了一种新方法,该方法解决了在提供完全贝叶斯框架的同时出现的许多挑战。此外,与使用蒙特卡罗马尔可夫链的方法不同,我们使用最大后验估计来近似后验密度。这种近似方法在保持最大似然速度的同时,能够实现准确且可重复的估计,这在处理大量高通量数据集等许多应用中非常重要。我们通过将其应用于经验实验室剂量-反应数据并测量 BMD 的置信限覆盖来评估该方法。我们将该方法的覆盖范围与使用相同模型集的其他方法进行了比较。通过仿真研究,该方法在分析二项数据时明显优于从美国环保署 BMD 软件中选择单个首选模型(例如)进行分析的传统方法,并且与其他方法相当或优于其他方法。

相似文献

3
A Web-Based System for Bayesian Benchmark Dose Estimation.基于网络的贝叶斯基准剂量估计系统。
Environ Health Perspect. 2018 Jan 11;126(1):017002. doi: 10.1289/EHP1289.

引用本文的文献

7
An investigation of non-informative priors for Bayesian dose-response modeling.贝叶斯剂量反应建模中无信息先验的研究。
Regul Toxicol Pharmacol. 2023 Jun;141:105389. doi: 10.1016/j.yrtph.2023.105389. Epub 2023 Apr 13.

本文引用的文献

1
Update: use of the benchmark dose approach in risk assessment.更新:基准剂量法在风险评估中的应用。
EFSA J. 2017 Jan 24;15(1):e04658. doi: 10.2903/j.efsa.2017.4658. eCollection 2017 Jan.
3
A Web-Based System for Bayesian Benchmark Dose Estimation.基于网络的贝叶斯基准剂量估计系统。
Environ Health Perspect. 2018 Jan 11;126(1):017002. doi: 10.1289/EHP1289.
8
Bayesian estimation of inverse dose response.逆剂量反应的贝叶斯估计
Biometrics. 2008 Dec;64(4):1223-30. doi: 10.1111/j.1541-0420.2008.01013.x. Epub 2008 Mar 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验