Wheeler Matthew W, Lim Sooyeong, House John, Shockley Keith, Bailer A John, Fostel Jennifer, Yang Longlong, Talley Dawan, Raghuraman Ashwin, Gift Jeffery S, Davis J Allen, Auerbach Scott S, Motsinger-Reif Alison A
Biostatistics and Computational Biology Branch Division of Intramural Research, National Institute of Environmental Health Sciences Durham, NC.
Miami University Department of Statistics Oxford, OH.
Comput Toxicol. 2023 Feb;25. doi: 10.1016/j.comtox.2022.100259. Epub 2022 Dec 27.
The need to analyze the complex relationships observed in high-throughput toxicogenomic and other omic platforms has resulted in an explosion of methodological advances in computational toxicology. However, advancements in the literature often outpace the development of software researchers can implement in their pipelines, and existing software is frequently based on pre-specified workflows built from well-vetted assumptions that may not be optimal for novel research questions. Accordingly, there is a need for a stable platform and open-source codebase attached to a programming language that allows users to program new algorithms. To fill this gap, the Biostatistics and Computational Biology Branch of the National Institute of Environmental Health Sciences, in cooperation with the National Toxicology Program (NTP) and US Environmental Protection Agency (EPA), developed ToxicR, an open-source R programming package. The ToxicR platform implements many of the standard analyses used by the NTP and EPA, including dose-response analyses for continuous and dichotomous data that employ Bayesian, maximum likelihood, and model averaging methods, as well as many standard tests the NTP uses in rodent toxicology and carcinogenicity studies, such as the poly-K and Jonckheere trend tests. ToxicR is built on the same codebase as current versions of the EPA's Benchmark Dose software and NTP's BMDExpress software but has increased flexibility because it directly accesses this software. To demonstrate ToxicR, we developed a custom workflow to illustrate its capabilities for analyzing toxicogenomic data. The unique features of ToxicR will allow researchers in other fields to add modules, increasing its functionality in the future.
分析高通量毒理基因组学及其他组学平台中观察到的复杂关系的需求,导致了计算毒理学方法学的大量进展。然而,文献中的进展往往超过了研究人员可在其流程中应用的软件的发展,并且现有软件常常基于从经过充分验证的假设构建的预先指定的工作流程,而这些假设可能并不适合新的研究问题。因此,需要一个与编程语言相关联的稳定平台和开源代码库,以允许用户编写新算法。为填补这一空白,美国国家环境健康科学研究所的生物统计学与计算生物学分支与美国国家毒理学计划(NTP)及美国环境保护局(EPA)合作,开发了ToxicR,一个开源的R编程包。ToxicR平台实现了NTP和EPA使用的许多标准分析,包括对连续和二分数据的剂量反应分析,这些分析采用贝叶斯、最大似然和模型平均方法,以及NTP在啮齿动物毒理学和致癌性研究中使用的许多标准测试,如多K检验和琼克尔趋势检验。ToxicR基于与EPA当前版本的基准剂量软件和NTP的BMDExpress软件相同的代码库构建,但具有更高的灵活性,因为它可以直接访问该软件。为展示ToxicR,我们开发了一个定制工作流程来说明其分析毒理基因组学数据的能力。ToxicR的独特功能将使其他领域的研究人员能够添加模块,从而在未来增加其功能。