Suppr超能文献

控制别构蛋白电化学开关的生物分子和电子信号。

Control of Allosteric Protein Electrochemical Switches with Biomolecular and Electronic Signals.

机构信息

Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States.

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.

出版信息

J Phys Chem Lett. 2020 Jul 16;11(14):5549-5554. doi: 10.1021/acs.jpclett.0c01223. Epub 2020 Jun 30.

Abstract

The construction of allosteric protein switches is a key goal of synthetic biology. Such switches can be compiled into signaling systems mimicking information and energy processing systems of living organisms. Here we demonstrate construction of a biocatalytic electrode functionalized with a recombinant chimeric protein between pyrroloquinoline quinone-dependent glucose dehydrogenase and calmodulin. This electrode could be activated by calmodulin-binding peptide and showed a high bioelectrocatalytic current (ca. 300 μA) due to efficient direct electron transfer. In order to expand the types of inputs that can be used to activate the developed electrode, we constructed a caged version of calmodulin-binding peptide that could be proteolytically uncaged using a protease of choice. Finally, the complexity of the switchable bioelectrochemical system was further increased by the use of almost any kind of molecule/biomolecule or electronic signal, unequivocally proving the orthogonality of the aforementioned system.

摘要

别构蛋白开关的构建是合成生物学的一个关键目标。这种开关可以被编译成信号系统,模拟生物体的信息和能量处理系统。在这里,我们展示了一种生物催化电极的构建,该电极由吡咯喹啉醌依赖型葡萄糖脱氢酶和钙调蛋白之间的重组嵌合蛋白功能化。这种电极可以被钙调蛋白结合肽激活,并由于有效的直接电子转移而显示出高的生物电化学电流(约 300 μA)。为了扩展可用于激活所开发电极的输入类型,我们构建了钙调蛋白结合肽的笼状版本,该版本可以使用所选的蛋白酶进行蛋白水解去笼。最后,通过使用几乎任何种类的分子/生物分子或电子信号,进一步增加了可切换的生物电化学系统的复杂性,这明确证明了上述系统的正交性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验