Suppr超能文献

多栖息地放射组学揭示具有临床和基因组意义的胶质母细胞瘤不同表型亚型

Multi-Habitat Radiomics Unravels Distinct Phenotypic Subtypes of Glioblastoma with Clinical and Genomic Significance.

作者信息

Choi Seung Won, Cho Hwan-Ho, Koo Harim, Cho Kyung Rae, Nenning Karl-Heinz, Langs Georg, Furtner Julia, Baumann Bernhard, Woehrer Adelheid, Cho Hee Jin, Sa Jason K, Kong Doo-Sik, Seol Ho Jun, Lee Jung-Il, Nam Do-Hyun, Park Hyunjin

机构信息

Department of Neurosurgery, Sungkyunkwan University, School of Medicine, Samsung Medical Center, Seoul 06351 Korea.

Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea.

出版信息

Cancers (Basel). 2020 Jun 27;12(7):1707. doi: 10.3390/cancers12071707.

Abstract

We aimed to evaluate the potential of radiomics as an imaging biomarker for glioblastoma (GBM) patients and explore the molecular rationale behind radiomics using a radio-genomics approach. A total of 144 primary GBM patients were included in this study (training cohort). Using multi-parametric MR images, radiomics features were extracted from multi-habitats of the tumor. We applied Cox-LASSO algorithm to build a survival prediction model, which we validated using an independent validation cohort. GBM patients were consensus clustered to reveal inherent phenotypic subtypes. GBM patients were successfully stratified by the radiomics risk score, a weighted sum of radiomics features, corroborating the potential of radiomics as a prognostic biomarker. Using consensus clustering, we identified three distinct subtypes which significantly differed in the prognosis ("heterogenous enhancing", "rim-enhancing necrotic", and "cystic" subtypes). Transcriptomic traits enriched in individual subtypes were in accordance with imaging phenotypes summarized by radiomics. For example, rim-enhancing necrotic subtype was well described by radiomics profiling (T2 autocorrelation and flat shape) and highlighted by the inflammatory genomic signatures, which well correlated to its phenotypic peculiarity (necrosis). This study showed that imaging subtypes derived from radiomics successfully recapitulated the genomic underpinnings of GBMs and thereby confirmed the feasibility of radiomics as an imaging biomarker for GBM patients with comprehensible biologic annotation.

摘要

我们旨在评估放射组学作为胶质母细胞瘤(GBM)患者成像生物标志物的潜力,并使用放射基因组学方法探索放射组学背后的分子原理。本研究纳入了总共144例原发性GBM患者(训练队列)。利用多参数磁共振图像,从肿瘤的多个部位提取放射组学特征。我们应用Cox-LASSO算法构建生存预测模型,并使用独立验证队列进行验证。对GBM患者进行一致性聚类以揭示内在的表型亚型。GBM患者通过放射组学风险评分成功分层,放射组学风险评分是放射组学特征的加权和,证实了放射组学作为预后生物标志物的潜力。通过一致性聚类,我们确定了三种不同的亚型,其预后有显著差异(“异质性强化”、“边缘强化坏死”和“囊性”亚型)。在各个亚型中富集的转录组特征与放射组学总结的成像表型一致。例如,边缘强化坏死亚型通过放射组学分析(T2自相关和平坦形状)得到很好的描述,并以炎症基因组特征为突出表现,这与其表型特征(坏死)密切相关。本研究表明,源自放射组学的成像亚型成功地概括了GBM的基因组基础,从而证实了放射组学作为具有可理解生物学注释的GBM患者成像生物标志物的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e22/7408408/d1e1d900dfe7/cancers-12-01707-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验