Suppr超能文献

病灶形态特征有助于区分常规多参数 MRI 上脑肿瘤进展与假性进展:一项多中心研究。

Shape Features of the Lesion Habitat to Differentiate Brain Tumor Progression from Pseudoprogression on Routine Multiparametric MRI: A Multisite Study.

机构信息

From the Department of Biomedical Engineering (M.I., P.P., R.C., G.S., K.B., N.B., R.T., A.M., P.T.), Case Western Reserve University, Cleveland, Ohio

Department of Neuroradiology (V.H., V.S.), Imaging Institute.

出版信息

AJNR Am J Neuroradiol. 2018 Dec;39(12):2187-2193. doi: 10.3174/ajnr.A5858. Epub 2018 Nov 1.

Abstract

BACKGROUND AND PURPOSE

Differentiating pseudoprogression, a radiation-induced treatment effect, from tumor progression on imaging is a substantial challenge in glioblastoma management. Unfortunately, guidelines set by the Response Assessment in Neuro-Oncology criteria are based solely on bidirectional diametric measurements of enhancement observed on T1WI and T2WI/FLAIR scans. We hypothesized that quantitative 3D shape features of the enhancing lesion on T1WI, and T2WI/FLAIR hyperintensities (together called the lesion habitat) can more comprehensively capture pathophysiologic differences across pseudoprogression and tumor recurrence, not appreciable on diametric measurements alone.

MATERIALS AND METHODS

A total of 105 glioblastoma studies from 2 institutions were analyzed, consisting of a training ( = 59) and an independent test ( = 46) cohort. For every study, expert delineation of the lesion habitat (T1WI enhancing lesion and T2WI/FLAIR hyperintense perilesional region) was obtained, followed by extraction of 30 shape features capturing 14 "global" contour characteristics and 16 "local" curvature measures for every habitat region. Feature selection was used to identify most discriminative features on the training cohort, which were evaluated on the test cohort using a support vector machine classifier.

RESULTS

The top 2 most discriminative features were identified as local features capturing total curvature of the enhancing lesion and curvedness of the T2WI/FLAIR hyperintense perilesional region. Using top features from the training cohort (training accuracy = 91.5%), we obtained an accuracy of 90.2% on the test set in distinguishing pseudoprogression from tumor progression.

CONCLUSIONS

Our preliminary results suggest that 3D shape attributes from the lesion habitat can differentially express across pseudoprogression and tumor progression and could be used to distinguish these radiographically similar pathologies.

摘要

背景与目的

在影像学上区分假性进展,这是一种辐射诱导的治疗效应,与肿瘤进展是胶质母细胞瘤管理中的一个重大挑战。不幸的是,神经肿瘤反应评估标准所制定的指南仅基于 T1WI 上增强扫描和 T2WI/FLAIR 扫描的双向直径测量。我们假设 T1WI 上增强病变和 T2WI/FLAIR 高信号(统称为病变栖息地)的定量 3D 形状特征可以更全面地捕捉假性进展和肿瘤复发之间的病理生理差异,而不仅仅是单独的直径测量。

材料与方法

共分析了来自 2 个机构的 105 项胶质母细胞瘤研究,包括一个训练集(n=59)和一个独立测试集(n=46)。对于每一项研究,我们都获得了病变栖息地(T1WI 增强病变和 T2WI/FLAIR 高信号病变周围区域)的专家勾画,然后提取了 30 个形状特征,这些特征包括 14 个“全局”轮廓特征和 16 个“局部”曲率测量值,用于每个栖息地区域。我们使用特征选择来识别训练集中最具区分性的特征,然后使用支持向量机分类器在测试集中评估这些特征。

结果

前 2 个最具区分性的特征被确定为局部特征,用于捕获增强病变的总曲率和 T2WI/FLAIR 高信号病变周围区域的弯曲度。使用训练集的前 2 个特征(训练准确率=91.5%),我们在测试集上获得了区分假性进展和肿瘤进展的准确率为 90.2%。

结论

我们的初步结果表明,病变栖息地的 3D 形状属性可以在假性进展和肿瘤进展之间产生差异表达,并可用于区分这些影像学相似的病变。

相似文献

4
Machine learning-based radiomic evaluation of treatment response prediction in glioblastoma.
Clin Radiol. 2021 Aug;76(8):628.e17-628.e27. doi: 10.1016/j.crad.2021.03.019. Epub 2021 May 1.
5
Imaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis.
Radiol Clin North Am. 2019 Nov;57(6):1199-1216. doi: 10.1016/j.rcl.2019.07.003. Epub 2019 Aug 16.

引用本文的文献

2
Radiomic-based prognostic score for survival risk-stratification in pediatric medulloblastoma tumors: A multi-institutional study.
Neurooncol Adv. 2025 Jun 5;7(1):vdaf107. doi: 10.1093/noajnl/vdaf107. eCollection 2025 Jan-Dec.
4
The clinical implications and interpretability of computational medical imaging (radiomics) in brain tumors.
Insights Imaging. 2025 Mar 30;16(1):77. doi: 10.1186/s13244-025-01950-6.
5
Advances in Glioblastoma Diagnosis: Integrating Genetics, Noninvasive Sampling, and Advanced Imaging.
Cancers (Basel). 2025 Jan 2;17(1):124. doi: 10.3390/cancers17010124.
6
Decoding Glioblastoma Heterogeneity: Neuroimaging Meets Machine Learning.
Neurosurgery. 2025 Jun 1;96(6):1181-1192. doi: 10.1227/neu.0000000000003260. Epub 2024 Nov 21.
7
Machine Learning and Radiomics in Gliomas.
Adv Exp Med Biol. 2024;1462:231-243. doi: 10.1007/978-3-031-64892-2_14.

本文引用的文献

1
Radiologic image-based statistical shape analysis of brain tumours.
J R Stat Soc Ser C Appl Stat. 2018 Nov;67(5):1357-1378. doi: 10.1111/rssc.12272. Epub 2018 Mar 15.
9
The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence.
Int J Mol Sci. 2014 Jul 3;15(7):11832-46. doi: 10.3390/ijms150711832.
10
Quantitative imaging in cancer evolution and ecology.
Radiology. 2013 Oct;269(1):8-15. doi: 10.1148/radiol.13122697.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验