文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载吲哚菁绿的靶向纳米气泡用于前列腺癌的超声、光声和荧光成像。

Targeted Nanobubbles Carrying Indocyanine Green for Ultrasound, Photoacoustic and Fluorescence Imaging of Prostate Cancer.

机构信息

The First Clinical College, Chongqing Medical University, Chongqing, People's Republic of China.

Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.

出版信息

Int J Nanomedicine. 2020 Jun 17;15:4289-4309. doi: 10.2147/IJN.S243548. eCollection 2020.


DOI:10.2147/IJN.S243548
PMID:32606678
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7306459/
Abstract

OBJECTIVE: To construct prostate-specific membrane antigen (PSMA)-targeting, indocyanine green (ICG)-loaded nanobubbles (NBs) for multimodal (ultrasound, photoacoustic and fluorescence) imaging of prostate cancer. METHODS: The mechanical oscillation method was used to prepare ICG-loaded photoacoustic NBs (ICG NBs). Then, PSMA-binding peptides were connected to the surface of ICG NBs using the biotin-avidin method to make targeted photoacoustic NBs, namely, PSMAP/ICG NBs. Their particle sizes, zeta potentials, and in vitro ultrasound, photoacoustic and fluorescence imaging were examined. Confocal laser scanning microscopy and flow cytometry were used to detect the binding ability of the PSMAP/ICG NBs to PSMA-positive LNCaP cells, C4-2 cells, and PSMA-negative PC-3 cells. The multimodal imaging effects of PSMAP/ICG NBs and ICG NBs were compared in nude mouse tumor xenografts. RESULTS: The particle size of the PSMAP/ICG NBs was approximately 457.7 nm, and the zeta potential was approximately -23.5 mV. Both confocal laser scanning microscopy and flow cytometry confirmed that the PSMAP/ICG NBs could specifically bind to both LNCaP and C4-2 cells, but they rarely bound to PC-3 cells. The ultrasound, photoacoustic and fluorescence imaging intensities of the PSMAP/ICG NBs in vitro positively correlated with their concentrations. The ultrasound and photoacoustic imaging effects of the PSMAP/ICG NBs in LNCaP and C4-2 tumor xenografts were significantly enhanced compared with those in PC-3 tumor xenografts, which were characterized by a significantly increased duration of ultrasound enhancement and heightened photoacoustic signal intensity (P < 0.05). Fluorescence imaging showed that PSMAP/ICG NBs could accumulate in LNCaP and C4-2 tumor xenografts for a relatively long period. CONCLUSION: The targeted photoacoustic nanobubbles prepared in this study can specifically bind to PSMA-positive prostate cancer cells and have the ability to enhance ultrasound, photoacoustic and fluorescence imaging of PSMA-positive tumor xenografts. Photoacoustic imaging could visually display the intensity of the red photoacoustic signal in the tumor region, providing a more intuitive imaging modality for targeted molecular imaging. This study presents a potential multimodal contrast agent for the accurate diagnosis and assessment of prostate cancer.

摘要

目的:构建靶向前列腺特异性膜抗原(PSMA)的吲哚菁绿(ICG)负载纳米泡(NBs),用于前列腺癌的多模态(超声、光声和荧光)成像。

方法:采用机械振荡法制备ICG 负载的光声 NB(ICG NBs)。然后,通过生物素-亲和素法将 PSMA 结合肽连接到 ICG NBs 的表面,制得靶向光声 NBs,即 PSMAP/ICG NBs。对其粒径、Zeta 电位以及体外超声、光声和荧光成像进行了检测。应用共聚焦激光扫描显微镜和流式细胞术检测 PSMAP/ICG NBs 与 PSMA 阳性 LNCaP 细胞、C4-2 细胞和 PSMA 阴性 PC-3 细胞的结合能力。在裸鼠肿瘤异种移植模型中比较了 PSMAP/ICG NBs 和 ICG NBs 的多模态成像效果。

结果:PSMAP/ICG NBs 的粒径约为 457.7nm,Zeta 电位约为-23.5mV。共聚焦激光扫描显微镜和流式细胞术均证实 PSMAP/ICG NBs 可特异性结合 LNCaP 和 C4-2 细胞,但与 PC-3 细胞结合较少。PSMAP/ICG NBs 体外的超声、光声和荧光成像强度与浓度呈正相关。PSMAP/ICG NBs 在 LNCaP 和 C4-2 肿瘤异种移植模型中的超声和光声成像效果明显增强,其超声增强持续时间和光声信号强度明显升高(P<0.05)。荧光成像显示,PSMAP/ICG NBs 可在 LNCaP 和 C4-2 肿瘤异种移植模型中较长时间聚集。

结论:本研究制备的靶向光声 NB 可特异性结合 PSMA 阳性前列腺癌细胞,具有增强 PSMA 阳性肿瘤异种移植体超声、光声和荧光成像的能力。光声成像是一种可以直观显示肿瘤区域红光声信号强度的成像方式,为靶向分子成像提供了一种更直观的成像方式。该研究为前列腺癌的准确诊断和评估提供了一种潜在的多模态对比剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/a5cb948a6e89/IJN-15-4289-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/3ed950500a57/IJN-15-4289-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/c29822066c71/IJN-15-4289-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/5101ceb322b4/IJN-15-4289-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/ea6527bd8915/IJN-15-4289-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/3e7d0b838f5a/IJN-15-4289-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/bb82fe7848d1/IJN-15-4289-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/ca122c6ab0dd/IJN-15-4289-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/956d3e225cff/IJN-15-4289-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/68d8ebd7f931/IJN-15-4289-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/e9f3b820629d/IJN-15-4289-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/f8ad93229bfb/IJN-15-4289-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/a5cb948a6e89/IJN-15-4289-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/3ed950500a57/IJN-15-4289-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/c29822066c71/IJN-15-4289-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/5101ceb322b4/IJN-15-4289-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/ea6527bd8915/IJN-15-4289-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/3e7d0b838f5a/IJN-15-4289-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/bb82fe7848d1/IJN-15-4289-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/ca122c6ab0dd/IJN-15-4289-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/956d3e225cff/IJN-15-4289-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/68d8ebd7f931/IJN-15-4289-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/e9f3b820629d/IJN-15-4289-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/f8ad93229bfb/IJN-15-4289-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2e/7306459/a5cb948a6e89/IJN-15-4289-g0012.jpg

相似文献

[1]
Targeted Nanobubbles Carrying Indocyanine Green for Ultrasound, Photoacoustic and Fluorescence Imaging of Prostate Cancer.

Int J Nanomedicine. 2020-6-17

[2]
Multifunctional nanobubbles carrying indocyanine green and paclitaxel for molecular imaging and the treatment of prostate cancer.

J Nanobiotechnology. 2020-9-3

[3]
Indocyanine Green-Loaded Nanobubbles Targeting Carbonic Anhydrase IX for Multimodal Imaging of Renal Cell Carcinoma.

Int J Nanomedicine. 2023

[4]
Optimized Anti-Prostate-Specific Membrane Antigen Single-Chain Variable Fragment-Loaded Nanobubbles as a Novel Targeted Ultrasound Contrast Agent for the Diagnosis of Prostate Cancer.

J Ultrasound Med. 2020-4

[5]
Nanobody-loaded nanobubbles targeting the G250 antigen with ultrasound/photoacoustic/fluorescence multimodal imaging capabilities for specifically enhanced imaging of RCC.

Nanoscale. 2023-12-21

[6]
Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide--glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer.

Int J Nanomedicine. 2017-7-26

[7]
Diagnosis of prostate cancer using anti-PSMA aptamer A10-3.2-oriented lipid nanobubbles.

Int J Nanomedicine. 2016-8-12

[8]
Efficacy evaluation and mechanism study on inhibition of breast cancer cell growth by multimodal targeted nanobubbles carrying AMD070 and ICG.

Nanotechnology. 2020-3-27

[9]
Construction and in vitro/in vivo targeting of PSMA-targeted nanoscale microbubbles in prostate cancer.

Prostate. 2013-3-26

[10]
Magnetic polymeric nanobubbles with optimized core size for MRI/ultrasound bimodal molecular imaging of prostate cancer.

Nanomedicine (Lond). 2020-12

引用本文的文献

[1]
Progress and potential of nanobubbles for ultrasound-mediated drug delivery.

Expert Opin Drug Deliv. 2025-7

[2]
Preliminary Study on Pharmacokinetics and Antitumor Pharmacodynamics of Folic Acid Modified Crebanine Polyethyleneglycol-Polylactic Acid Hydroxyacetic Acid Copolymer Nanoparticles.

Int J Nanomedicine. 2024

[3]
Enhancing photothermal therapy of tumors with image-guided thermal control of gene-expressing bacteria.

Theranostics. 2024

[4]
Multimodal optoacoustic imaging: methods and contrast materials.

Chem Soc Rev. 2024-6-17

[5]
Knowledge mapping of application of image-guided surgery in prostate cancer: a bibliometric analysis (2013-2023).

Int J Surg. 2024-5-1

[6]
Exploring the Theranostic Applications and Prospects of Nanobubbles.

Curr Pharm Biotechnol. 2024

[7]
Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy.

Front Immunol. 2023

[8]
Photoacoustic signal enhancement in dual-contrast gastrin-releasing peptide receptor-targeted nanobubbles.

Front Bioeng Biotechnol. 2023-1-17

[9]
Ultrasound and Nanomedicine for Cancer-Targeted Drug Delivery: Screening, Cellular Mechanisms and Therapeutic Opportunities.

Pharmaceutics. 2022-6-16

[10]
Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials.

Polymers (Basel). 2022-3-17

本文引用的文献

[1]
G250 Antigen-Targeting Drug-Loaded Nanobubbles Combined with Ultrasound Targeted Nanobubble Destruction: A Potential Novel Treatment for Renal Cell Carcinoma.

Int J Nanomedicine. 2020-1-8

[2]
Nanobubble Liposome Complexes for Diagnostic Imaging and Ultrasound-Triggered Drug Delivery in Cancers: A Theranostic Approach.

ACS Omega. 2019-9-12

[3]
Simultaneous transrectal ultrasound and photoacoustic human prostate imaging.

Sci Transl Med. 2019-8-28

[4]
Development and characterization of a theranostic multimodal anti-PSMA targeting agent for imaging, surgical guidance, and targeted photodynamic therapy of PSMA-expressing tumors.

Theranostics. 2019-5-4

[5]
Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging.

Biomater Sci. 2019-4-23

[6]
CAIX aptamer-functionalized targeted nanobubbles for ultrasound molecular imaging of various tumors.

Int J Nanomedicine. 2018-10-16

[7]
Dual-mode imaging and therapeutic effects of drug-loaded phase-transition nanoparticles combined with near-infrared laser and low-intensity ultrasound on ovarian cancer.

Drug Deliv. 2018-11

[8]
Apatinib-loaded lipid nanobubbles combined with ultrasound-targeted nanobubble destruction for synergistic treatment of HepG2 cells in vitro.

Onco Targets Ther. 2018-8-10

[9]
Photoacoustic imaging of integrin-overexpressing tumors using a novel ICG-based contrast agent in mice.

Photoacoustics. 2018-8-3

[10]
Phase-shift, targeted nanoparticles for ultrasound molecular imaging by low intensity focused ultrasound irradiation.

Int J Nanomedicine. 2018-7-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索