Suppr超能文献

深度学习在乳腺 X 线图像分类中的预训练策略:一项评估研究。

Deep Learning Pre-training Strategy for Mammogram Image Classification: an Evaluation Study.

机构信息

Department of Computer Science, University of Pittsburgh, 3240 Craft Place, Pittsburgh, PA, 15213, USA.

Department of Biomedical Informatics, University of Pittsburgh, 3240 Craft Place, Pittsburgh, PA, 15213, USA.

出版信息

J Digit Imaging. 2020 Oct;33(5):1257-1265. doi: 10.1007/s10278-020-00369-3.

Abstract

In this work, we assess how pre-training strategy affects deep learning performance for the task of distinguishing false-recall from malignancy and normal (benign) findings in digital mammography images. A cohort of 1303 breast cancer screening patients (4935 digital mammogram images in total) was retrospectively analyzed as the target dataset for this study. We assessed six different convolutional neural network model structures utilizing four different imaging datasets (total > 1.4 million images (including ImageNet); medical images different in terms of scale, modality, organ, and source) for pre-training on six classification tasks to assess how the performance of CNN models varies based on training strategy. Representative pre-training strategies included transfer learning with medical and non-medical datasets, layer freezing, varied network structure, and multi-view input for both binary and triple-class classification of mammogram images. The area under the receiver operating characteristic curve (AUC) was used as the model performance metric. The best performing model out of all experimental settings was an AlexNet model incrementally pre-trained on ImageNet and a large Breast Density dataset. The AUC for the six classification tasks using this model ranged from 0.68 to 0.77. In the case of distinguishing recalled-benign mammograms from others, four out of five pre-training strategies tested produced significant performance differences from the baseline model. This study suggests that pre-training strategy influences significant performance differences, especially in the case of distinguishing recalled- benign from malignant and benign screening patients.

摘要

在这项工作中,我们评估了预训练策略如何影响深度学习在区分数字乳腺图像中的假召回与恶性和良性发现的任务中的性能。我们回顾性地分析了一个由 1303 名乳腺癌筛查患者组成的队列(总共 4935 张数字乳腺 X 线照片)作为本研究的目标数据集。我们评估了六个不同的卷积神经网络模型结构,利用四个不同的成像数据集(总共超过 140 万张图像(包括 ImageNet);在规模、模态、器官和来源方面有所不同的医学图像)进行预训练,以评估 CNN 模型的性能如何基于训练策略而变化。代表性的预训练策略包括使用医学和非医学数据集的迁移学习、冻结层、不同的网络结构以及对乳腺 X 线照片的二进制和三分类分类的多视图输入。接收者操作特征曲线下的面积(AUC)被用作模型性能指标。在所有实验设置中表现最好的模型是在 ImageNet 和大型乳腺密度数据集上逐步预训练的 AlexNet 模型。该模型在六个分类任务中的 AUC 范围为 0.68 至 0.77。在区分召回良性乳腺 X 线照片与其他乳腺 X 线照片的情况下,五种预训练策略中有四种与基线模型相比产生了显著的性能差异。这项研究表明,预训练策略会影响显著的性能差异,特别是在区分召回良性与恶性和良性筛查患者的情况下。

相似文献

1
Deep Learning Pre-training Strategy for Mammogram Image Classification: an Evaluation Study.
J Digit Imaging. 2020 Oct;33(5):1257-1265. doi: 10.1007/s10278-020-00369-3.
2
Deep Learning to Distinguish Recalled but Benign Mammography Images in Breast Cancer Screening.
Clin Cancer Res. 2018 Dec 1;24(23):5902-5909. doi: 10.1158/1078-0432.CCR-18-1115. Epub 2018 Oct 11.
3
A deep learning method for classifying mammographic breast density categories.
Med Phys. 2018 Jan;45(1):314-321. doi: 10.1002/mp.12683. Epub 2017 Dec 22.
6
Deep learning modeling using normal mammograms for predicting breast cancer risk.
Med Phys. 2020 Jan;47(1):110-118. doi: 10.1002/mp.13886. Epub 2019 Nov 19.
9
Impact of image compression on deep learning-based mammogram classification.
Sci Rep. 2021 Apr 12;11(1):7924. doi: 10.1038/s41598-021-86726-w.
10
Detection and Weak Segmentation of Masses in Gray-Scale Breast Mammogram Images Using Deep Learning.
Yonsei Med J. 2022 Jan;63(Suppl):S63-S73. doi: 10.3349/ymj.2022.63.S63.

引用本文的文献

1
A Deep Learning Decision Support Tool to Improve Risk Stratification and Reduce Unnecessary Biopsies in BI-RADS 4 Mammograms.
Radiol Artif Intell. 2023 Aug 9;5(6):e220259. doi: 10.1148/ryai.220259. eCollection 2023 Nov.
2
Leveraging Multi-Task Learning to Cope With Poor and Missing Labels of Mammograms.
Front Radiol. 2022 Jan 11;1:796078. doi: 10.3389/fradi.2021.796078. eCollection 2021.
5
Transfer learning for medical image classification: a literature review.
BMC Med Imaging. 2022 Apr 13;22(1):69. doi: 10.1186/s12880-022-00793-7.
6
The overview of the deep learning integrated into the medical imaging of liver: a review.
Hepatol Int. 2021 Aug;15(4):868-880. doi: 10.1007/s12072-021-10229-z. Epub 2021 Jul 15.

本文引用的文献

1
A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction.
Radiology. 2019 Jul;292(1):60-66. doi: 10.1148/radiol.2019182716. Epub 2019 May 7.
2
Deep Learning to Distinguish Recalled but Benign Mammography Images in Breast Cancer Screening.
Clin Cancer Res. 2018 Dec 1;24(23):5902-5909. doi: 10.1158/1078-0432.CCR-18-1115. Epub 2018 Oct 11.
3
A deep learning method for classifying mammographic breast density categories.
Med Phys. 2018 Jan;45(1):314-321. doi: 10.1002/mp.12683. Epub 2017 Dec 22.
5
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
7
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
IEEE Trans Med Imaging. 2016 May;35(5):1299-1312. doi: 10.1109/TMI.2016.2535302. Epub 2016 Mar 7.
8
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
IEEE Trans Med Imaging. 2016 May;35(5):1285-98. doi: 10.1109/TMI.2016.2528162. Epub 2016 Feb 11.
9
Screening for Breast Cancer: U.S. Preventive Services Task Force Recommendation Statement.
Ann Intern Med. 2016 Feb 16;164(4):279-96. doi: 10.7326/M15-2886. Epub 2016 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验