Suppr超能文献

多任务迁移学习深度卷积神经网络:在乳腺 X 光片中应用于乳腺癌的计算机辅助诊断。

Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms.

机构信息

Department of Radiology, University of Michigan, Ann Arbor, MI 48109-5842, United States of America.

出版信息

Phys Med Biol. 2017 Nov 10;62(23):8894-8908. doi: 10.1088/1361-6560/aa93d4.

Abstract

Transfer learning in deep convolutional neural networks (DCNNs) is an important step in its application to medical imaging tasks. We propose a multi-task transfer learning DCNN with the aim of translating the 'knowledge' learned from non-medical images to medical diagnostic tasks through supervised training and increasing the generalization capabilities of DCNNs by simultaneously learning auxiliary tasks. We studied this approach in an important application: classification of malignant and benign breast masses. With Institutional Review Board (IRB) approval, digitized screen-film mammograms (SFMs) and digital mammograms (DMs) were collected from our patient files and additional SFMs were obtained from the Digital Database for Screening Mammography. The data set consisted of 2242 views with 2454 masses (1057 malignant, 1397 benign). In single-task transfer learning, the DCNN was trained and tested on SFMs. In multi-task transfer learning, SFMs and DMs were used to train the DCNN, which was then tested on SFMs. N-fold cross-validation with the training set was used for training and parameter optimization. On the independent test set, the multi-task transfer learning DCNN was found to have significantly (p  =  0.007) higher performance compared to the single-task transfer learning DCNN. This study demonstrates that multi-task transfer learning may be an effective approach for training DCNN in medical imaging applications when training samples from a single modality are limited.

摘要

在深度卷积神经网络(DCNN)中,迁移学习是将其应用于医学成像任务的重要步骤。我们提出了一种多任务迁移学习 DCNN,旨在通过监督训练将从非医学图像中学到的“知识”转化为医学诊断任务,并通过同时学习辅助任务来提高 DCNN 的泛化能力。我们在一个重要的应用中研究了这种方法:恶性和良性乳腺肿块的分类。在获得机构审查委员会(IRB)批准的情况下,从我们的患者档案中收集了数字化屏-片乳腺 X 线摄影(SFMs)和数字乳腺 X 线摄影(DMs),并从数字筛查乳腺 X 线摄影数据库中获得了额外的 SFMs。数据集由 2242 个视图和 2454 个肿块组成(1057 个恶性,1397 个良性)。在单任务迁移学习中,DCNN 在 SFMs 上进行训练和测试。在多任务迁移学习中,SFMs 和 DMs 用于训练 DCNN,然后在 SFMs 上进行测试。使用训练集的 N 折交叉验证进行训练和参数优化。在独立测试集上,发现多任务迁移学习 DCNN 的性能明显(p  =  0.007)优于单任务迁移学习 DCNN。这项研究表明,当单一模态的训练样本有限时,多任务迁移学习可能是在医学成像应用中训练 DCNN 的有效方法。

相似文献

引用本文的文献

5
Machine learning and new insights for breast cancer diagnosis.用于乳腺癌诊断的机器学习与新见解
J Int Med Res. 2024 Apr;52(4):3000605241237867. doi: 10.1177/03000605241237867.
6
Mammography with deep learning for breast cancer detection.用于乳腺癌检测的深度学习乳腺X线摄影术。
Front Oncol. 2024 Feb 12;14:1281922. doi: 10.3389/fonc.2024.1281922. eCollection 2024.
10
Ipsilateral Lesion Detection Refinement for Tomosynthesis.断层合成术中同侧病变检测的细化。
IEEE Trans Med Imaging. 2023 Oct;42(10):3080-3090. doi: 10.1109/TMI.2023.3280135. Epub 2023 Oct 2.

本文引用的文献

1
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
5
Multi-Stage Multi-Task Feature Learning.多阶段多任务特征学习
Adv Neural Inf Process Syst. 2013 Oct;14:2979-3010.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验