Department of Medicine, Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Neurogastroenterol Motil. 2021 Mar;33(3):e13932. doi: 10.1111/nmo.13932. Epub 2020 Jul 1.
Achalasia subtypes on high-resolution manometry (HRM) prognosticate treatment response and help direct management plan. We aimed to utilize parameters of distension-induced contractility and pressurization on functional luminal imaging probe (FLIP) panometry and machine learning to predict HRM achalasia subtypes.
One hundred eighty adult patients with treatment-naïve achalasia defined by HRM per Chicago Classification (40 type I, 99 type II, 41 type III achalasia) who underwent FLIP panometry were included: 140 patients were used as the training cohort and 40 patients as the test cohort. FLIP panometry studies performed with 16-cm FLIP assemblies were retrospectively analyzed to assess distensive pressure and distension-induced esophageal contractility. Correlation analysis, single tree, and random forest were adopted to develop classification trees to identify achalasia subtypes.
Intra-balloon pressure at 60 mL fill volume, and proportions of patients with absent contractile response, repetitive retrograde contractile pattern, occluding contractions, sustained occluding contractions (SOC), contraction-associated pressure changes >10 mm Hg all differed between HRM achalasia subtypes and were used to build the decision tree-based classification model. The model identified spastic (type III) vs non-spastic (types I and II) achalasia with 90% and 78% accuracy in the train and test cohorts, respectively. Achalasia subtypes I, II, and III were identified with 71% and 55% accuracy in the train and test cohorts, respectively.
Using a supervised machine learning process, a preliminary model was developed that distinguished type III achalasia from non-spastic achalasia with FLIP panometry. Further refinement of the measurements and more experience (data) may improve its ability for clinically relevant application.
高分辨率测压(HRM)上的贲门失弛缓症亚型可预测治疗反应,并有助于指导管理计划。我们旨在利用膨胀诱导收缩性和加压性参数在功能腔内成像探头(FLIP)全景测压上,并利用机器学习来预测 HRM 贲门失弛缓症亚型。
180 例经 HRM 按芝加哥分类(40 型 I、99 型 II、41 型 III 贲门失弛缓症)定义的初治贲门失弛缓症成年患者接受了 FLIP 全景测压:140 例患者作为训练队列,40 例患者作为测试队列。回顾性分析使用 16-cm FLIP 组件进行的 FLIP 全景测压研究,以评估膨胀压力和膨胀诱导的食管收缩性。采用相关分析、单棵树和随机森林来建立分类树,以识别贲门失弛缓症亚型。
在 60ml 充盈体积下的球内压力,以及无收缩反应、重复逆行收缩模式、闭塞收缩、持续闭塞收缩(SOC)、收缩相关压力变化>10mmHg 的患者比例,在 HRM 贲门失弛缓症亚型之间均存在差异,并用于构建基于决策树的分类模型。该模型在训练和测试队列中分别以 90%和 78%的准确率识别出痉挛型(III 型)和非痉挛型(I 型和 II 型)贲门失弛缓症。在训练和测试队列中,贲门失弛缓症 I 型、II 型和 III 型的识别准确率分别为 71%和 55%。
使用有监督的机器学习过程,我们开发了一个初步模型,该模型可以使用 FLIP 全景测压来区分 III 型贲门失弛缓症和非痉挛型贲门失弛缓症。进一步改进测量方法并积累更多经验(数据)可能会提高其在临床相关应用中的能力。