Suppr超能文献

基于反向传播神经网络和遗传算法的基坑变形监测及其在岩土工程中的应用。

The deformation monitoring of foundation pit by back propagation neural network and genetic algorithm and its application in geotechnical engineering.

机构信息

Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, HongKong, China.

Water environment branch, China Metallurgical Group Corporation Huatian Company. Nanjing, China.

出版信息

PLoS One. 2020 Jul 1;15(7):e0233398. doi: 10.1371/journal.pone.0233398. eCollection 2020.

Abstract

The objective is to improve the prediction accuracy of foundation pit deformation in geotechnical engineering, thereby provide early warning for engineering practice. The digital close-range photogrammetry is used to obtain monitoring data. The error compensation method is used to optimize the center of the monitoring point. Aiming at the limitations of back propagation neural network (BPNN), a genetic algorithm (GA)-optimized BPNN algorithm is proposed. Then, the optimized algorithm is applied to predict the deformation and displacement of foundation pits from three aspects, i.e., simple horizontal displacement, simple longitudinal displacement, and the combination of horizontal and longitudinal displacements. Meanwhile, the time domain, space domain, and time-space domain are used as input features to compare the prediction results of the BPNN model and the GA-optimized BPNN model. Finally, the GA-improved BPNN is compared with the Support Vector Regression (SVR) model and Random Forest (RF) model. The results show that the prediction result, obtained by simultaneously using horizontal displacement and longitudinal displacement as input features, has smaller errors; also, the actual output is closer to the expected output. Compared with the prediction result with time domain and space domain as input features, the prediction result with time-space domain as input features is closer to the expected output. Taking the combination of time and space domains as input features, compared with the BPNN model, the GA-optimized BPNN model has a lower Root Mean Squared Error (RMSE) value (0.0163), a larger Index of Agreement (IA) value (0.9800), and a shorter training time (7.08 s). Compared with the SVR model and RF model, the GA-improved BPNN model has a lower Root Mean Squared Error (RMSE) value (0.0211), a larger Index of Agreement (IA) value (0.9706), and shorter training time (7.61 s). Therefore, the foundation pit deformation prediction model based on BPNN and GA has strong prediction ability, which can be popularized and applied in similar geotechnical engineering.

摘要

目的是提高岩土工程中基坑变形预测的精度,从而为工程实践提供预警。采用数字近景摄影测量获取监测数据。使用误差补偿方法优化监测点的中心。针对反向传播神经网络(BPNN)的局限性,提出了一种遗传算法(GA)优化的 BPNN 算法。然后,将优化算法应用于从三个方面预测基坑的变形和位移,即简单水平位移、简单纵向位移以及水平和纵向位移的组合。同时,将时域、空域和时空域用作输入特征,以比较 BPNN 模型和 GA 优化 BPNN 模型的预测结果。最后,将 GA 改进的 BPNN 与支持向量回归(SVR)模型和随机森林(RF)模型进行比较。结果表明,同时使用水平位移和纵向位移作为输入特征的预测结果误差较小,实际输出更接近预期输出。与使用时域和空域作为输入特征的预测结果相比,使用时空域作为输入特征的预测结果更接近预期输出。以时间和空间域的组合作为输入特征,与 BPNN 模型相比,GA 优化的 BPNN 模型具有更低的均方根误差(RMSE)值(0.0163)、更大的一致性指数(IA)值(0.9800)和更短的训练时间(7.08s)。与 SVR 模型和 RF 模型相比,GA 改进的 BPNN 模型具有更低的均方根误差(RMSE)值(0.0211)、更大的一致性指数(IA)值(0.9706)和更短的训练时间(7.61s)。因此,基于 BPNN 和 GA 的基坑变形预测模型具有较强的预测能力,可在类似岩土工程中推广应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/307b/7329262/f8aaac51cdc1/pone.0233398.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验