Suppr超能文献

SpectraClassifier 1.0:一个用户友好、自动化的基于 MRS 的分类器开发系统。

SpectraClassifier 1.0: a user friendly, automated MRS-based classifier-development system.

机构信息

Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, UAB, Cerdanyola del Vallés (Barcelona), 08193, Spain.

出版信息

BMC Bioinformatics. 2010 Feb 24;11:106. doi: 10.1186/1471-2105-11-106.

Abstract

BACKGROUND

SpectraClassifier (SC) is a Java solution for designing and implementing Magnetic Resonance Spectroscopy (MRS)-based classifiers. The main goal of SC is to allow users with minimum background knowledge of multivariate statistics to perform a fully automated pattern recognition analysis. SC incorporates feature selection (greedy stepwise approach, either forward or backward), and feature extraction (PCA). Fisher Linear Discriminant Analysis is the method of choice for classification. Classifier evaluation is performed through various methods: display of the confusion matrix of the training and testing datasets; K-fold cross-validation, leave-one-out and bootstrapping as well as Receiver Operating Characteristic (ROC) curves.

RESULTS

SC is composed of the following modules: Classifier design, Data exploration, Data visualisation, Classifier evaluation, Reports, and Classifier history. It is able to read low resolution in-vivo MRS (single-voxel and multi-voxel) and high resolution tissue MRS (HRMAS), processed with existing tools (jMRUI, INTERPRET, 3DiCSI or TopSpin). In addition, to facilitate exchanging data between applications, a standard format capable of storing all the information needed for a dataset was developed. Each functionality of SC has been specifically validated with real data with the purpose of bug-testing and methods validation. Data from the INTERPRET project was used.

CONCLUSIONS

SC is a user-friendly software designed to fulfil the needs of potential users in the MRS community. It accepts all kinds of pre-processed MRS data types and classifies them semi-automatically, allowing spectroscopists to concentrate on interpretation of results with the use of its visualisation tools.

摘要

背景

SpectraClassifier(SC)是一个用于设计和实现磁共振波谱(MRS)分类器的 Java 解决方案。SC 的主要目标是允许具有最小多元统计背景知识的用户执行全自动模式识别分析。SC 包括特征选择(贪婪逐步方法,向前或向后)和特征提取(PCA)。Fisher 线性判别分析是分类的首选方法。通过各种方法进行分类器评估:显示训练和测试数据集的混淆矩阵;K 折交叉验证、留一法和自举以及接收者操作特征(ROC)曲线。

结果

SC 由以下模块组成:分类器设计、数据探索、数据可视化、分类器评估、报告和分类器历史。它能够读取低分辨率体内 MRS(单体素和多体素)和高分辨率组织 MRS(HRMAS),这些数据由现有的工具(jMRUI、INTERPRET、3DiCSI 或 TopSpin)处理。此外,为了促进应用程序之间的数据交换,开发了一种能够存储数据集所需的所有信息的标准格式。SC 的每个功能都使用真实数据进行了专门的验证,目的是进行错误测试和方法验证。使用了 INTERPRET 项目的数据。

结论

SC 是一款用户友好的软件,旨在满足 MRS 社区潜在用户的需求。它接受各种预处理的 MRS 数据类型,并对其进行半自动分类,允许光谱学家使用其可视化工具专注于结果的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ca/2846905/0dfd379005ac/1471-2105-11-106-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验