From the Aab Cardiovascular Research Institute, Department of Medicine (J.W., K.C.V.S., F.J., E.-S.K., D.M., P.Y.), University of Rochester School of Medicine & Dentistry, New York.
Graduate Program in Genetics, Development and Stem Cells, Department of Biomedical Genetics (L.H.X.), University of Rochester School of Medicine & Dentistry, New York.
Circ Res. 2020 Aug 28;127(6):827-846. doi: 10.1161/CIRCRESAHA.119.315999. Epub 2020 Jul 1.
Increased protein synthesis of profibrotic genes is a common feature in cardiac fibrosis and heart failure. Despite this observation, critical factors and molecular mechanisms for translational control of profibrotic genes during cardiac fibrosis remain unclear.
To investigate the role of a bifunctional ARS (aminoacyl-tRNA synthetase), EPRS (glutamyl-prolyl-tRNA synthetase) in translational control of cardiac fibrosis.
Results from reanalyses of multiple publicly available data sets of human and mouse heart failure, demonstrated that EPRS acted as an integrated node among the ARSs in various cardiac pathogenic processes. We confirmed that EPRS was induced at mRNA and protein levels (≈1.5-2.5-fold increase) in failing hearts compared with nonfailing hearts using our cohort of human and mouse heart samples. Genetic knockout of one allele of globally () using CRISPR-Cas9 technology or in a Postn-Cre-dependent manner (; ) strongly reduces cardiac fibrosis (≈50% reduction) in isoproterenol-, transverse aortic constriction-, and myocardial infarction (MI)-induced heart failure mouse models. Inhibition of EPRS using a PRS (prolyl-tRNA synthetase)-specific inhibitor, halofuginone, significantly decreases translation efficiency (TE) of proline-rich collagens in cardiac fibroblasts as well as TGF-β (transforming growth factor-β)-activated myofibroblasts. Overexpression of EPRS increases collagen protein expression in primary cardiac fibroblasts under TGF-β stimulation. Using transcriptome-wide RNA-Seq and polysome profiling-Seq in halofuginone-treated fibroblasts, we identified multiple novel Pro-rich genes in addition to collagens, such as Ltbp2 (latent TGF-β-binding protein 2) and Sulf1 (sulfatase 1), which are translationally regulated by EPRS. SULF1 is highly enriched in human and mouse myofibroblasts. In the primary cardiac fibroblast culture system, siRNA-mediated knockdown of SULF1 attenuates cardiac myofibroblast activation and collagen deposition. Overexpression of SULF1 promotes TGF-β-induced myofibroblast activation and partially antagonizes anti-fibrotic effects of halofuginone treatment.
Our results indicate that EPRS preferentially controls translational activation of proline codon rich profibrotic genes in cardiac fibroblasts and augments pathological cardiac remodeling. Graphical Abstract: A graphical abstract is available for this article.
成纤维细胞增殖基因的蛋白质合成增加是心肌纤维化和心力衰竭的共同特征。尽管有此观察结果,但在心肌纤维化过程中,对于成纤维细胞增殖基因翻译控制的关键因素和分子机制仍不清楚。
研究双功能 ARS(氨酰-tRNA 合成酶)、EPRS(谷氨酰-脯氨酰-tRNA 合成酶)在心脏纤维化的翻译控制中的作用。
对人类和小鼠心力衰竭的多个公开可用数据集的重新分析结果表明,EPRS 在各种心脏致病过程中是 ARS 的整合节点。我们使用我们的人类和小鼠心脏样本队列证实,与非衰竭心脏相比,衰竭心脏中的 EPRS 在 mRNA 和蛋白质水平上(增加约 1.5-2.5 倍)被诱导。使用 CRISPR-Cas9 技术或 Postn-Cre 依赖性方式(; )在全局敲除一个等位基因()强烈减少异丙肾上腺素、主动脉缩窄和心肌梗死(MI)诱导的心力衰竭小鼠模型中的心脏纤维化(减少约 50%)。使用 PRS(脯氨酰-tRNA 合成酶)特异性抑制剂卤夫酮抑制 EPRS 可显著降低心脏成纤维细胞和 TGF-β(转化生长因子-β)激活的肌成纤维细胞中富含脯氨酸的胶原蛋白的翻译效率(TE)。在 TGF-β刺激下,EPRS 的过表达增加原代心脏成纤维细胞中胶原蛋白的蛋白表达。在卤夫酮处理的成纤维细胞中进行全转录组 RNA-Seq 和多核糖体分析-Seq,我们除了胶原蛋白外,还鉴定了多个新的富含 Pro 的基因,例如 Ltbp2(潜伏 TGF-β结合蛋白 2)和 Sulf1(磺基转移酶 1),它们受 EPRS 翻译调控。SULF1 在人和小鼠肌成纤维细胞中高度富集。在原代心脏成纤维细胞培养系统中,siRNA 介导的 SULF1 敲低可减弱心脏肌成纤维细胞的激活和胶原蛋白沉积。SULF1 的过表达促进 TGF-β诱导的肌成纤维细胞激活,并部分拮抗卤夫酮治疗的抗纤维化作用。
我们的结果表明,EPRS 优先控制心脏成纤维细胞中富含脯氨酸的成纤维细胞增殖基因的翻译激活,并增强病理性心脏重塑。