Suppr超能文献

SPARKLING:用于加速 T 加权 MRI 的变密度 K 空间填充曲线。

SPARKLING: variable-density k-space filling curves for accelerated T -weighted MRI.

机构信息

NeuroSpin, CEA Saclay, Gif-sur-Yvette, France.

Université Paris-Saclay, France.

出版信息

Magn Reson Med. 2019 Jun;81(6):3643-3661. doi: 10.1002/mrm.27678. Epub 2019 Feb 17.

Abstract

PURPOSE

To present a new optimition-driven design of optimal k-space trajectories in the context of compressed sensing: Spreading Projection Algorithm for Rapid K-space sampLING (SPARKLING).

THEORY

The SPARKLING algorithm is a versatile method inspired from stippling techniques that automatically generates optimized sampling patterns compatible with MR hardware constraints on maximum gradient amplitude and slew rate. These non-Cartesian sampling curves are designed to comply with key criteria for optimal sampling: a controlled distribution of samples (e.g., variable density) and a locally uniform k-space coverage.

METHODS

Ex vivo and in vivo prospective -weighted acquisitions were performed on a 7-Tesla scanner using the SPARKLING trajectories for various setups and target densities. Our method was compared to radial and variable-density spiral trajectories for high-resolution imaging.

RESULTS

Combining sampling efficiency with compressed sensing, the proposed sampling patterns allowed up to 20-fold reductions in MR scan time (compared to fully sampled Cartesian acquisitions) for two-dimensional -weighted imaging without deterioration of image quality, as demonstrated by our experimental results at 7 Tesla on in vivo human brains for a high in-plane resolution of 390 μm. In comparison to existing non-Cartesian sampling strategies, the proposed technique also yielded superior image quality.

CONCLUSIONS

The proposed optimization-driven design of k-space trajectories is a versatile framework that is able to enhance MR sampling performance in the context of compressed sensing.

摘要

目的

提出一种新的基于压缩感知的优化 k 空间轨迹设计:快速 k 空间采样的扩展投影算法(SPARKLING)。

理论

SPARKLING 算法是一种通用的方法,灵感来自于点子技术,可以自动生成与 MR 硬件对最大梯度幅度和上升时间的约束兼容的优化采样模式。这些非笛卡尔采样曲线旨在满足最佳采样的关键标准:样本的受控分布(例如,可变密度)和局部均匀的 k 空间覆盖。

方法

在 7T 扫描仪上使用 SPARKLING 轨迹进行了离体和体内前瞻性 -加权采集,针对各种设置和目标密度。我们的方法与径向和可变密度螺旋轨迹进行了高分辨率成像的比较。

结果

结合采样效率和压缩感知,所提出的采样模式允许二维 -加权成像的 MR 扫描时间减少 20 倍(与完全采样的笛卡尔采集相比),而不会降低图像质量,我们在 7T 上对活体人脑进行的实验结果证明了这一点,对于 390μm 的高平面分辨率。与现有的非笛卡尔采样策略相比,所提出的技术还产生了更好的图像质量。

结论

所提出的 k 空间轨迹的优化驱动设计是一种通用的框架,能够在压缩感知的背景下增强 MR 采样性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验