Suppr超能文献

通过投影联合学习用于二维和三维磁共振成像的非笛卡尔空间轨迹和重建网络。

Jointly Learning Non-Cartesian -Space Trajectories and Reconstruction Networks for 2D and 3D MR Imaging through Projection.

作者信息

Radhakrishna Chaithya Giliyar, Ciuciu Philippe

机构信息

Neurospin, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, 91191 Gif-sur-Yvette, France.

Inria, Models and Inference for Neuroimaging Data (MIND), 91120 Palaiseau, France.

出版信息

Bioengineering (Basel). 2023 Jan 24;10(2):158. doi: 10.3390/bioengineering10020158.

Abstract

Compressed sensing in magnetic resonance imaging essentially involves the optimization of (1) the sampling pattern in -space under MR hardware constraints and (2) image reconstruction from undersampled -space data. Recently, deep learning methods have allowed the community to address both problems simultaneously, especially in the non-Cartesian acquisition setting. This work aims to contribute to this field by tackling some major concerns in existing approaches. Particularly, current state-of-the-art learning methods seek hardware compliant -space sampling trajectories by enforcing the hardware constraints through additional penalty terms in the training loss. Through ablation studies, we rather show the benefit of using a projection step to enforce these constraints and demonstrate that the resulting -space trajectories are more flexible under a projection-based scheme, which results in superior performance in reconstructed image quality. In 2D studies, our novel method trajectories present an improved image reconstruction quality at a 20-fold acceleration factor on the fastMRI data set with SSIM scores of nearly 0.92-0.95 in our retrospective studies as compared to the corresponding Cartesian reference and also see a 3-4 dB gain in PSNR as compared to earlier state-of-the-art methods. Finally, we extend the algorithm to 3D and by comparing optimization as learning-based projection schemes, we show that data-driven joint learning-based method trajectories outperform model-based methods such as SPARKLING through a 2 dB gain in PSNR and 0.02 gain in SSIM.

摘要

磁共振成像中的压缩感知主要涉及以下两方面的优化

(1)在磁共振硬件限制下对空间采样模式的优化;(2)从不充分采样的空间数据进行图像重建。最近,深度学习方法使该领域能够同时解决这两个问题,尤其是在非笛卡尔采集设置中。这项工作旨在通过解决现有方法中的一些主要问题,为该领域做出贡献。具体而言,当前最先进的学习方法通过在训练损失中添加额外的惩罚项来强制硬件约束,从而寻找符合硬件要求的空间采样轨迹。通过对比研究,我们反而展示了使用投影步骤来强制这些约束的好处,并证明在基于投影的方案下,所得的空间轨迹更加灵活,这在重建图像质量方面带来了卓越的性能。在二维研究中,我们的新方法轨迹在fastMRI数据集上以20倍加速因子实现了更高的图像重建质量,在回顾性研究中,与相应的笛卡尔参考相比,结构相似性(SSIM)分数接近0.92 - 0.95,并且与早期的最先进方法相比,峰值信噪比(PSNR)提高了3 - 4 dB。最后,我们将算法扩展到三维,并通过比较基于学习的投影方案的优化,表明基于数据驱动联合学习的方法轨迹在PSNR方面提高了2 dB,在SSIM方面提高了0.02,优于基于模型的方法,如SPARKLING。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7631/9952463/d77f7b8ac5c1/bioengineering-10-00158-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验