Yang Eunyeong, Seo Jae Eun, Seo Dongwook, Chang Jiwon
Department of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea.
Nanoscale. 2020 Jul 21;12(27):14636-14641. doi: 10.1039/d0nr03001e. Epub 2020 Jul 2.
High contact resistance (R) limits the ultimate potential of two-dimensional (2-D) materials for future devices. To resolve the R problem, forming metallic 1T phase MoS locally in the semiconducting 2H phase MoS has been successfully demonstrated to use the 1T phase as source/drain electrodes in field effect transistors (FETs). However, the long-term stability of the 1T phase MoS still remains as an issue. Recently, an unusual thickness-modulated phase transition from semiconducting to metallic has been experimentally observed in 2-D material PtSe. Metallic multilayer PtSe and semiconducting monolayer PtSe can be used as source/drain electrodes and channel, respectively, in FETs. Here, we present a theoretical study on the intrinsic lower limit of R in the metallic-semiconducting PtSe heterostructure through density functional theory (DFT) combined with non-equilibrium Green's function (NEGF). Compared with R in the 1T-2H MoS heterostructure, the multilayer-monolayer PtSe heterostructure can offer much lower R due to the better capability of providing more transmission modes.
高接触电阻(R)限制了二维(2-D)材料在未来器件中的最终潜力。为了解决R问题,已成功证明在半导体2H相MoS₂中局部形成金属1T相MoS₂,以便在场效应晶体管(FET)中使用1T相作为源极/漏极电极。然而,1T相MoS₂的长期稳定性仍然是一个问题。最近,在二维材料PtSe₂中通过实验观察到了一种从半导体到金属的异常厚度调制相变。金属多层PtSe₂和半导体单层PtSe₂可分别用作FET中的源极/漏极电极和沟道。在此,我们通过密度泛函理论(DFT)结合非平衡格林函数(NEGF)对金属-半导体PtSe₂异质结构中R的固有下限进行了理论研究。与1T-2H MoS₂异质结构中的R相比,多层-单层PtSe₂异质结构由于具有提供更多传输模式的更好能力,能够提供低得多的R。