Suppr超能文献

基于字典的 MRI 重建图割算法。

A dictionary-based graph-cut algorithm for MRI reconstruction.

机构信息

Department of Computer Science, Cornell University, Ithaca, New York.

Department of Radiology, University of California, San Francisco, California.

出版信息

NMR Biomed. 2020 Dec;33(12):e4344. doi: 10.1002/nbm.4344. Epub 2020 Jul 2.

Abstract

PURPOSE

Compressive sensing (CS)-based image reconstruction methods have proposed random undersampling schemes that produce incoherent, noise-like aliasing artifacts, which are easier to remove. The denoising process is critically assisted by imposing sparsity-enforcing priors. Sparsity is known to be induced if the prior is in the form of the L (0 ≤ p ≤ 1) norm. CS methods generally use a convex relaxation of these priors such as the L norm, which may not exploit the full power of CS. An efficient, discrete optimization formulation is proposed, which works not only on arbitrary L -norm priors as some non-convex CS methods do, but also on highly non-convex truncated penalty functions, resulting in a specific type of edge-preserving prior. These advanced features make the minimization problem highly non-convex, and thus call for more sophisticated minimization routines.

THEORY AND METHODS

The work combines edge-preserving priors with random undersampling, and solves the resulting optimization using a set of discrete optimization methods called graph cuts. The resulting optimization problem is solved by applying graph cuts iteratively within a dictionary, defined here as an appropriately constructed set of vectors relevant to brain MRI data used here.

RESULTS

Experimental results with in vivo data are presented.

CONCLUSION

The proposed algorithm produces better results than regularized SENSE or standard CS for reconstruction of in vivo data.

摘要

目的

基于压缩感知(CS)的图像重建方法提出了随机欠采样方案,产生非相干的、类似噪声的混叠伪影,更容易去除。通过施加稀疏约束先验,有助于降噪过程。如果先验采用 L(0≤p≤1)范数的形式,则已知会产生稀疏性。CS 方法通常使用这些先验的凸松弛,例如 L 范数,这可能无法充分利用 CS 的全部优势。本文提出了一种有效的离散优化公式,不仅可以应用于某些非凸 CS 方法所采用的任意 L-范数先验,还可以应用于高度非凸截断惩罚函数,从而产生一种特定类型的边缘保持先验。这些先进的特性使得最小化问题高度非凸,因此需要更复杂的最小化例程。

理论与方法

该工作将边缘保持先验与随机欠采样相结合,并使用一组称为图割的离散优化方法来解决由此产生的优化问题。通过在字典内迭代应用图割来解决所得到的优化问题,字典在这里被定义为与这里使用的脑 MRI 数据相关的一组适当构造的向量。

实验结果

呈现了体内数据的实验结果。

结论

与常规正则化 SENSE 或标准 CS 相比,该算法可用于体内数据的重建,能产生更好的结果。

相似文献

1
A dictionary-based graph-cut algorithm for MRI reconstruction.基于字典的 MRI 重建图割算法。
NMR Biomed. 2020 Dec;33(12):e4344. doi: 10.1002/nbm.4344. Epub 2020 Jul 2.
2
Blind compressive sensing dynamic MRI.盲压缩感知动态 MRI。
IEEE Trans Med Imaging. 2013 Jun;32(6):1132-45. doi: 10.1109/TMI.2013.2255133. Epub 2013 Mar 27.

本文引用的文献

1
Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning.图像重建:从稀疏性到数据自适应方法与机器学习
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):86-109. doi: 10.1109/JPROC.2019.2936204. Epub 2019 Sep 19.
2
ACCELERATED CORONARY MRI USING 3D SPIRIT-RAKI WITH SPARSITY REGULARIZATION.使用具有稀疏正则化的3D SPIRIT-RAKI加速冠状动脉磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1692-1695. doi: 10.1109/ISBI.2019.8759459. Epub 2019 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验