Suppr超能文献

TFvelo:受基因调控启发的 RNA 速度估计。

TFvelo: gene regulation inspired RNA velocity estimation.

机构信息

Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China.

出版信息

Nat Commun. 2024 Feb 15;15(1):1387. doi: 10.1038/s41467-024-45661-w.

Abstract

RNA velocity is closely related with cell fate and is an important indicator for the prediction of cell states with elegant physical explanation derived from single-cell RNA-seq data. Most existing RNA velocity models aim to extract dynamics from the phase delay between unspliced and spliced mRNA for each individual gene. However, unspliced/spliced mRNA abundance may not provide sufficient signal for dynamic modeling, leading to poor fit in phase portraits. Motivated by the idea that RNA velocity could be driven by the transcriptional regulation, we propose TFvelo, which expands RNA velocity concept to various single-cell datasets without relying on splicing information, by introducing gene regulatory information. Our experiments on synthetic data and multiple scRNA-Seq datasets show that TFvelo can accurately fit genes dynamics on phase portraits, and effectively infer cell pseudo-time and trajectory from RNA abundance data. TFvelo opens a robust and accurate avenue for modeling RNA velocity for single cell data.

摘要

RNA 速度与细胞命运密切相关,是通过单细胞 RNA-seq 数据得出的优雅物理解释来预测细胞状态的重要指标。大多数现有的 RNA 速度模型旨在从每个基因的未剪接和剪接 mRNA 之间的相位延迟中提取动态信息。然而,未剪接/剪接 mRNA 的丰度可能不足以提供动态建模的信号,导致相位图中的拟合效果不佳。受 RNA 速度可能受转录调控驱动的启发,我们提出了 TFvelo,它通过引入基因调控信息,将 RNA 速度的概念扩展到各种单细胞数据集,而不依赖于剪接信息。我们在合成数据和多个 scRNA-Seq 数据集上的实验表明,TFvelo 可以准确地拟合相位图上的基因动态,并且可以有效地从 RNA 丰度数据推断细胞伪时间和轨迹。TFvelo 为单细胞数据的 RNA 速度建模开辟了一条稳健而准确的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0178/11258302/402924971373/41467_2024_45661_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验