Suppr超能文献

利用深度生成模型在空间组学平台上以增强分辨率进行组织特征描述。

Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model.

机构信息

School of Artificial Intelligence, Beihang University, Beijing, China.

Beijing National Research Center for Information Science and Technology (BNRist), Beijing, China.

出版信息

Nat Commun. 2024 Aug 2;15(1):6541. doi: 10.1038/s41467-024-50837-5.

Abstract

Recent advances in spatial omics have expanded the spectrum of profiled molecular categories beyond transcriptomics. However, many of these technologies are constrained by limited spatial resolution, hindering our ability to deeply characterize intricate tissue architectures. Existing computational methods primarily focus on the resolution enhancement of transcriptomics data, lacking the adaptability to address the emerging spatial omics technologies that profile various omics types. Here, we introduce soScope, a unified generative framework designed to enhance data quality and spatial resolution for molecular profiles obtained from diverse spatial technologies. soScope aggregates multimodal tissue information from omics, spatial relations and images, and jointly infers omics profiles at enhanced resolutions with omics-specific modeling through distribution priors. With comprehensive evaluations on diverse spatial omics platforms, including Visium, Xenium, spatial-CUT&Tag, and slide-DNA/RNA-seq, soScope improves performances in identifying biologically meaningful intestine and kidney architectures, revealing embryonic heart structure that cannot be resolved at the original resolution and correcting sample and technical biases arising from sequencing and sample processing. Furthermore, soScope extends to spatial multiomics technology spatial-CITE-seq and spatial ATAC-RNA-seq, leveraging cross-omics reference for simultaneous multiomics enhancement. soScope provides a versatile tool to improve the utilization of continually expanding spatial omics technologies and resources.

摘要

近年来,空间组学的发展扩大了分子分类的范围,超越了转录组学。然而,许多这些技术受到空间分辨率的限制,阻碍了我们深入描述复杂组织结构的能力。现有的计算方法主要集中在转录组学数据的分辨率增强上,缺乏适应新兴空间组学技术的能力,这些技术可以对各种组学类型进行分析。在这里,我们介绍了 soScope,这是一个统一的生成框架,旨在增强从各种空间技术获得的分子图谱的质量和空间分辨率。soScope 聚合了来自组学、空间关系和图像的多模态组织信息,并通过分布先验,通过组学特定的建模,联合推断以增强分辨率的组学图谱。在各种空间组学平台上进行了全面的评估,包括 Visium、Xenium、spatial-CUT&Tag 和 slide-DNA/RNA-seq,soScope 提高了识别有生物学意义的肠道和肾脏结构的性能,揭示了在原始分辨率下无法解析的胚胎心脏结构,并纠正了由于测序和样本处理而产生的样本和技术偏差。此外,soScope 扩展到了空间多组学技术 spatial-CITE-seq 和 spatial ATAC-RNA-seq,利用跨组学参考进行同时的多组学增强。soScope 提供了一种通用的工具,可以提高不断扩展的空间组学技术和资源的利用率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fb/11297205/0d60d89b4c64/41467_2024_50837_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验