Suppr超能文献

集成分类方法在肺癌决策支持系统中的映射研究。

A mapping study of ensemble classification methods in lung cancer decision support systems.

机构信息

Software Project Management Research Team, ENSIAS, Mohammed V University in Rabat, Rabat, Morocco.

Department of Informatics and Systems, Faculty of Computer Science, University of Murcia, Murcia, Spain.

出版信息

Med Biol Eng Comput. 2020 Oct;58(10):2177-2193. doi: 10.1007/s11517-020-02223-8. Epub 2020 Jul 3.

Abstract

Achieving a high level of classification accuracy in medical datasets is a capital need for researchers to provide effective decision systems to assist doctors in work. In many domains of artificial intelligence, ensemble classification methods are able to improve the performance of single classifiers. This paper reports the state of the art of ensemble classification methods in lung cancer detection. We have performed a systematic mapping study to identify the most interesting papers concerning this topic. A total of 65 papers published between 2000 and 2018 were selected after an automatic search in four digital libraries and a careful selection process. As a result, it was observed that diagnosis was the task most commonly studied; homogeneous ensembles and decision trees were the most frequently adopted for constructing ensembles; and the majority voting rule was the predominant combination rule. Few studies considered the parameter tuning of the techniques used. These findings open several perspectives for researchers to enhance lung cancer research by addressing the identified gaps, such as investigating different classification methods, proposing other heterogeneous ensemble methods, and using new combination rules. Graphical abstract Main features of the mapping study performed in ensemble classification methods applied on lung cancer decision support systems.

摘要

在医学数据集上实现高精度的分类准确率是研究人员的首要需求,以便为医生提供有效的决策系统。在人工智能的许多领域中,集成分类方法能够提高单个分类器的性能。本文报告了肺癌检测中集成分类方法的最新进展。我们进行了系统的映射研究,以确定与该主题最相关的最有趣的论文。在四个数字图书馆中进行自动搜索并经过仔细筛选后,共选择了 2000 年至 2018 年间发表的 65 篇论文。结果表明,诊断是最常研究的任务;同质集成和决策树是构建集成时最常采用的方法;多数投票规则是主要的组合规则。很少有研究考虑使用技术的参数调整。这些发现为研究人员提供了多个视角,通过解决已确定的差距来增强肺癌研究,例如研究不同的分类方法、提出其他异构集成方法以及使用新的组合规则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验