文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

计算机辅助决策支持系统在肺癌 CT 图像检测和分期分类中的应用。

Computer-Assisted Decision Support System in Pulmonary Cancer detection and stage classification on CT images.

机构信息

Dept. of Computer Science and Engineering, Shanghai Jiao Tong University, China; Dept. of Computer Science, COMSATS Institute of Information Technology, Pakistan.

Dept. of Computer Science and Engineering, Shanghai Jiao Tong University, China.

出版信息

J Biomed Inform. 2018 Mar;79:117-128. doi: 10.1016/j.jbi.2018.01.005. Epub 2018 Jan 31.


DOI:10.1016/j.jbi.2018.01.005
PMID:29366586
Abstract

Pulmonary cancer is considered as one of the major causes of death worldwide. For the detection of lung cancer, computer-assisted diagnosis (CADx) systems have been designed. Internet-of-Things (IoT) has enabled ubiquitous internet access to biomedical datasets and techniques; in result, the progress in CADx is significant. Unlike the conventional CADx, deep learning techniques have the basic advantage of an automatic exploitation feature as they have the ability to learn mid and high level image representations. We proposed a Computer-Assisted Decision Support System in Pulmonary Cancer by using the novel deep learning based model and metastasis information obtained from MBAN (Medical Body Area Network). The proposed model, DFCNet, is based on the deep fully convolutional neural network (FCNN) which is used for classification of each detected pulmonary nodule into four lung cancer stages. The performance of proposed work is evaluated on different datasets with varying scan conditions. Comparison of proposed classifier is done with the existing CNN techniques. Overall accuracy of CNN and DFCNet was 77.6% and 84.58%, respectively. Experimental results illustrate the effectiveness of proposed method for the detection and classification of lung cancer nodules. These results demonstrate the potential for the proposed technique in helping the radiologists in improving nodule detection accuracy with efficiency.

摘要

肺癌被认为是全球主要死因之一。为了检测肺癌,已经设计了计算机辅助诊断 (CADx) 系统。物联网 (IoT) 实现了对生物医学数据集和技术的无处不在的互联网访问;因此,CADx 的进展非常显著。与传统的 CADx 不同,深度学习技术具有自动利用特征的基本优势,因为它们能够学习中高级别的图像表示。我们通过使用基于新型深度学习的模型和从 MBAN(医疗体域网)获得的转移信息,提出了一种用于肺癌的计算机辅助决策支持系统。所提出的模型 DFCNet 基于深度全卷积神经网络 (FCNN),用于将每个检测到的肺结节分类为四个肺癌阶段。在所提出的工作中,使用不同的扫描条件评估不同数据集的性能。将所提出的分类器与现有的 CNN 技术进行比较。CNN 和 DFCNet 的总体准确率分别为 77.6%和 84.58%。实验结果说明了所提出的方法用于检测和分类肺癌结节的有效性。这些结果表明,所提出的技术有可能帮助放射科医生提高结节检测的准确性和效率。

相似文献

[1]
Computer-Assisted Decision Support System in Pulmonary Cancer detection and stage classification on CT images.

J Biomed Inform. 2018-1-31

[2]
Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies.

Sensors (Basel). 2019-8-28

[3]
A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning.

PLoS One. 2019-7-12

[4]
A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation.

J Xray Sci Technol. 2018

[5]
An improved 3-D attention CNN with hybrid loss and feature fusion for pulmonary nodule classification.

Comput Methods Programs Biomed. 2023-2

[6]
Improved lung nodule diagnosis accuracy using lung CT images with uncertain class.

Comput Methods Programs Biomed. 2018-5-18

[7]
Pulmonary Nodule Classification with Deep Convolutional Neural Networks on Computed Tomography Images.

Comput Math Methods Med. 2016

[8]
Single-view 2D CNNs with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection.

Comput Methods Programs Biomed. 2018-8-31

[9]
Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis.

Comput Biol Med. 2017-4-13

[10]
A bilinear convolutional neural network for lung nodules classification on CT images.

Int J Comput Assist Radiol Surg. 2021-1

引用本文的文献

[1]
Multitask Swin Transformer for classification and characterization of pulmonary nodules in CT images.

Quant Imaging Med Surg. 2025-3-3

[2]
Optimizing Bi-LSTM networks for improved lung cancer detection accuracy.

PLoS One. 2025-2-24

[3]
Overall Staging Prediction for Non-Small Cell Lung Cancer (NSCLC): A Local Pilot Study with Artificial Neural Network Approach.

Cancers (Basel). 2025-2-4

[4]
Enhancing interpretability and accuracy of AI models in healthcare: a comprehensive review on challenges and future directions.

Front Robot AI. 2024-11-28

[5]
A systematic review on artificial intelligence approaches for smart health devices.

PeerJ Comput Sci. 2024-10-21

[6]
Multi-View Soft Attention-Based Model for the Classification of Lung Cancer-Associated Disabilities.

Diagnostics (Basel). 2024-10-14

[7]
Enhancing semantic segmentation in chest X-ray images through image preprocessing: ps-KDE for pixel-wise substitution by kernel density estimation.

PLoS One. 2024

[8]
Transfer learning based approach for lung and colon cancer detection using local binary pattern features and explainable artificial intelligence (AI) techniques.

PeerJ Comput Sci. 2024-4-19

[9]
Clinical validation of a deep-learning-based bone age software in healthy Korean children.

Ann Pediatr Endocrinol Metab. 2024-4

[10]
Artificial Intelligence and Lung Cancer: Impact on Improving Patient Outcomes.

Cancers (Basel). 2023-10-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索