Kimia Lab, University of Waterloo, Ontario, Canada; Huron Digital Pathology, St. Jacobs, ON, Canada.
Kimia Lab, University of Waterloo, Ontario, Canada; Vector Institute, MaRS Centre, Toronto, Canada.
Med Image Anal. 2020 Oct;65:101757. doi: 10.1016/j.media.2020.101757. Epub 2020 Jun 24.
With the emergence of digital pathology, searching for similar images in large archives has gained considerable attention. Image retrieval can provide pathologists with unprecedented access to the evidence embodied in already diagnosed and treated cases from the past. This paper proposes a search engine specialized for digital pathology, called Yottixel, a portmanteau for "one yotta pixel," alluding to the big-data nature of histopathology images. The most impressive characteristic of Yottixel is its ability to represent whole slide images (WSIs) in a compact manner. Yottixel can perform millions of searches in real-time with a high search accuracy and low storage profile. Yottixel uses an intelligent indexing algorithm capable of representing WSIs with a mosaic of patches which are then converted into barcodes, called "Bunch of Barcodes" (BoB), the most prominent performance enabler of Yottixel. The performance of the prototype platform is qualitatively tested using 300 WSIs from the University of Pittsburgh Medical Center (UPMC) and 2,020 WSIs from The Cancer Genome Atlas Program (TCGA) provided by the National Cancer Institute. Both datasets amount to more than 4,000,000 patches of 1000 × 1000 pixels. We report three sets of experiments that show that Yottixel can accurately retrieve organs and malignancies, and its semantic ordering shows good agreement with the subjective evaluation of human observers.
随着数字病理学的出现,在大型档案中搜索相似图像引起了相当大的关注。图像检索可以为病理学家提供前所未有的访问权限,使他们能够访问过去已经诊断和治疗过的病例中所包含的证据。本文提出了一种专门用于数字病理学的搜索引擎,称为 Yottixel,这是“一兆像素”的混合词,暗示了组织病理学图像的大数据性质。Yottixel 最令人印象深刻的特点是它能够以紧凑的方式表示全幻灯片图像 (WSI)。Yottixel 可以实时执行数百万次搜索,具有高搜索准确性和低存储配置文件。Yottixel 使用一种智能索引算法,能够用马赛克贴片表示 WSI,然后将贴片转换为称为“Bunch of Barcodes”(BoB)的条形码,这是 Yottixel 的最突出性能推动因素。使用来自匹兹堡大学医学中心 (UPMC) 的 300 张 WSI 和国家癌症研究所提供的癌症基因组图谱计划 (TCGA) 的 2020 张 WSI 对原型平台的性能进行了定性测试。这两个数据集总计超过 400 万个 1000 x 1000 像素的贴片。我们报告了三组实验,表明 Yottixel 可以准确地检索器官和恶性肿瘤,并且其语义排序与人类观察者的主观评估具有良好的一致性。