KIMIA Lab, Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, Minnesota.
KIMIA Lab, Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, Minnesota.
Am J Pathol. 2024 Oct;194(10):1898-1912. doi: 10.1016/j.ajpath.2024.06.007. Epub 2024 Jul 18.
Digital pathology and the integration of artificial intelligence (AI) models have revolutionized histopathology, opening new opportunities. With the increasing availability of whole-slide images (WSIs), demand is growing for efficient retrieval, processing, and analysis of relevant images from vast biomedical archives. However, processing WSIs presents challenges due to their large size and content complexity. Full computer digestion of WSIs is impractical, and processing all patches individually is prohibitively expensive. In this article, we propose an unsupervised patching algorithm, Sequential Patching Lattice for Image Classification and Enquiry (SPLICE). This novel approach condenses a histopathology WSI into a compact set of representative patches, forming a collage of WSI while minimizing redundancy. SPLICE prioritizes patch quality and uniqueness by sequentially analyzing a WSI and selecting nonredundant representative features. In search and match applications, SPLICE showed improved accuracy, reduced computation time, and storage requirements compared with existing state-of-the-art methods. As an unsupervised method, SPLICE effectively reduced storage requirements for representing tissue images by 50%. This reduction can enable numerous algorithms in computational pathology to operate much more efficiently, paving the way for accelerated adoption of digital pathology.
数字病理学和人工智能 (AI) 模型的整合彻底改变了组织病理学,开辟了新的机会。随着全切片图像 (WSI) 的日益普及,人们对从庞大的生物医学档案中高效检索、处理和分析相关图像的需求不断增长。然而,由于其尺寸大和内容复杂,处理 WSI 带来了挑战。完全由计算机消化 WSI 是不切实际的,而单独处理所有的补丁则过于昂贵。在本文中,我们提出了一种无监督的补丁算法,即用于图像分类和查询的序列补丁网格 (SPLICE)。这种新方法将组织病理学 WSI 压缩为一组紧凑的代表性补丁,形成 WSI 的拼贴画,同时最小化冗余。SPLICE 通过顺序分析 WSI 并选择非冗余的代表性特征来优先考虑补丁的质量和独特性。在搜索和匹配应用中,SPLICE 与现有最先进的方法相比,显示出更高的准确性、更短的计算时间和更低的存储要求。作为一种无监督的方法,SPLICE 有效地将组织图像的存储需求减少了 50%。这种减少可以使计算病理学中的许多算法更加高效地运行,为数字病理学的加速采用铺平道路。