Herdiantoputri Ranny R, Komura Daisuke, Ochi Mieko, Fukawa Yuki, Kayamori Kou, Tsuchiya Maiko, Kikuchi Yoshinao, Ushiku Tetsuo, Ikeda Tohru, Ishikawa Shumpei
Department of Oral Pathology, Tokyo Medical and Dental University, Tokyo, JPN.
Department of Preventive Medicine, The University of Tokyo, Tokyo, JPN.
Cureus. 2024 Jun 12;16(6):e62264. doi: 10.7759/cureus.62264. eCollection 2024 Jun.
Oral tumors necessitate a dependable computer-assisted pathological diagnosis system considering their rarity and diversity. A content-based image retrieval (CBIR) system using deep neural networks has been successfully devised for digital pathology. No CBIR system for oral pathology has been investigated because of the lack of an extensive image database and feature extractors tailored to oral pathology.
This study uses a large CBIR database constructed from 30 categories of oral tumors to compare deep learning methods as feature extractors.
The highest average area under the receiver operating characteristic curve (AUC) was achieved by models trained on database images using self-supervised learning (SSL) methods (0.900 with SimCLR and 0.897 with TiCo). The generalizability of the models was validated using query images from the same cases taken with smartphones. When smartphone images were tested as queries, both models yielded the highest mean AUC (0.871 with SimCLR and 0.857 with TiCo). We ensured the retrieved image result would be easily observed by evaluating the top 10 mean accuracies and checking for an exact diagnostic category and its differential diagnostic categories.
Training deep learning models with SSL methods using image data specific to the target site is beneficial for CBIR tasks in oral tumor histology to obtain histologically meaningful results and high performance. This result provides insight into the effective development of a CBIR system to help improve the accuracy and speed of histopathology diagnosis and advance oral tumor research in the future.
口腔肿瘤因其罕见性和多样性,需要一个可靠的计算机辅助病理诊断系统。一种使用深度神经网络的基于内容的图像检索(CBIR)系统已成功应用于数字病理学。由于缺乏广泛的图像数据库和针对口腔病理学定制的特征提取器,尚未对口腔病理学的CBIR系统进行研究。
本研究使用从30类口腔肿瘤构建的大型CBIR数据库,比较作为特征提取器的深度学习方法。
使用自监督学习(SSL)方法在数据库图像上训练的模型在受试者工作特征曲线(AUC)下获得了最高的平均面积(SimCLR为0.900,TiCo为0.897)。使用智能手机拍摄的相同病例的查询图像验证了模型的泛化能力。当将智能手机图像作为查询进行测试时,两个模型均产生了最高的平均AUC(SimCLR为0.871,TiCo为0.857)。通过评估前10个平均准确率并检查确切的诊断类别及其鉴别诊断类别,我们确保检索到的图像结果易于观察。
使用特定于目标部位的图像数据通过SSL方法训练深度学习模型,有利于口腔肿瘤组织学的CBIR任务,以获得具有组织学意义的结果和高性能。这一结果为有效开发CBIR系统提供了思路,有助于提高组织病理学诊断的准确性和速度,并推动未来口腔肿瘤研究的发展。