Heinz Sven, Angel Emigdio Chavez, Trapp Maximilian, Kleebe Hans-Joachim, Jakob Gerhard
Institute of Physics, Johannes Gutenberg University, Staudingerweg 7, 55128 Mainz, Germany.
Graduate School of Excellence Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany.
Nanomaterials (Basel). 2020 Jun 25;10(6):1239. doi: 10.3390/nano10061239.
The implementation of thermal barriers in thermoelectric materials improves their power conversion rates effectively. For this purpose, material boundaries are utilized and manipulated to affect phonon transmissivity. Specifically, interface intermixing and topography represents a useful but complex parameter for thermal transport modification. This study investigates epitaxial thin film multilayers, so called superlattices (SL), of TiNiSn/HfNiSn, both with pristine and purposefully deteriorated interfaces. High-resolution transmission electron microscopy and X-ray diffractometry are used to characterize their structural properties in detail. A differential 3 ω -method probes their thermal resistivity. The thermal resistivity reaches a maximum for an intermediate interface quality and decreases again for higher boundary layer intermixing. For boundaries with the lowest interface quality, the interface thermal resistance is reduced by 23% compared to a pristine SL. While an uptake of diffuse scattering likely explains the initial deterioration of thermal transport, we propose a phonon bridge interpretation for the lowered thermal resistivity of the interfaces beyond a critical intermixing. In this picture, the locally reduced acoustic contrast of the less defined boundary acts as a mediator that promotes phonon transition.
在热电材料中实施热障可有效提高其功率转换率。为此,利用并操控材料边界来影响声子透射率。具体而言,界面混合和形貌是热传输改性的一个有用但复杂的参数。本研究调查了TiNiSn/HfNiSn外延薄膜多层结构,即所谓的超晶格(SL),包括原始界面和有意劣化的界面。使用高分辨率透射电子显微镜和X射线衍射仪详细表征其结构特性。采用差分3ω法探测其热阻率。热阻率在中间界面质量时达到最大值,而在更高的边界层混合时再次降低。对于界面质量最低的边界,与原始超晶格相比,界面热阻降低了23%。虽然漫散射的增加可能解释了热传输的初始劣化,但我们提出了一个声子桥解释,用于解释超过临界混合后界面热阻率降低的现象。在这种情况下,定义不明确的边界处局部降低的声学对比度起到了促进声子跃迁的介质作用。