Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.
Science. 2020 Jul 3;369(6499):59-64. doi: 10.1126/science.aba8740.
Eukaryotic histone H3-H4 tetramers contain a putative copper (Cu) binding site at the H3-H3' dimerization interface with unknown function. The coincident emergence of eukaryotes with global oxygenation, which challenged cellular copper utilization, raised the possibility that histones may function in cellular copper homeostasis. We report that the recombinant H3-H4 tetramer is an oxidoreductase enzyme that binds Cu and catalyzes its reduction to Cu in vitro. Loss- and gain-of-function mutations of the putative active site residues correspondingly altered copper binding and the enzymatic activity, as well as intracellular Cu abundance and copper-dependent mitochondrial respiration and Sod1 function in the yeast The histone H3-H4 tetramer, therefore, has a role other than chromatin compaction or epigenetic regulation and generates biousable Cu ions in eukaryotes.
真核生物组蛋白 H3-H4 四聚体在 H3-H3' 二聚体界面上含有一个假定的铜 (Cu) 结合位点,但功能未知。真核生物与全球氧合的同时出现,这对细胞铜的利用提出了挑战,这增加了组蛋白可能在细胞铜稳态中发挥作用的可能性。我们报告说,重组 H3-H4 四聚体是一种氧化还原酶,可结合 Cu 并在体外催化其还原为 Cu。假定活性位点残基的缺失和获得功能突变相应地改变了铜结合和酶活性,以及酵母细胞内 Cu 丰度和铜依赖性线粒体呼吸和 Sod1 功能。因此,组蛋白 H3-H4 四聚体除了参与染色质紧缩或表观遗传调控外,还有其他作用,并在真核生物中产生可利用的 Cu 离子。