School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Metallomics. 2013 Jan;5(1):52-61. doi: 10.1039/c2mt20176c.
Synchrotron X-ray fluorescence microscopy of non-synchronized NIH 3T3 fibroblasts revealed an intriguing redistribution dynamics that defines the inheritance of trace metals during mitosis. At metaphase, the highest density areas of Zn and Cu are localized in two distinct regions adjacent to the metaphase plate. As the sister chromatids are pulled towards the spindle poles during anaphase, Zn and Cu gradually move to the center and partition into the daughter cells to yield a pair of twin pools during cytokinesis. Colocalization analyses demonstrated high spatial correlations between Zn, Cu, and S throughout all mitotic stages, while Fe showed consistently different topographies characterized by high-density spots distributed across the entire cell. Whereas the total amount of Cu remained similar compared to interphase cells, mitotic Zn levels increased almost 3-fold, suggesting a prominent physiological role that lies beyond the requirement of Zn as a cofactor in metalloproteins or messenger in signaling pathways.
利用同步化 NIH 3T3 成纤维细胞的同步加速器 X 射线荧光显微镜,揭示了一种有趣的重分布动力学,它定义了有丝分裂过程中痕量金属的遗传。在中期,Zn 和 Cu 的最高密度区域定位于靠近中期板的两个不同区域。随着姐妹染色单体在后期被拉向纺锤体极,Zn 和 Cu 逐渐向中心移动,并在胞质分裂过程中分配到子细胞中,形成一对双胞胎池。共定位分析表明,在所有有丝分裂阶段,Zn、Cu 和 S 之间都存在高度的空间相关性,而 Fe 则表现出一致的不同形貌,特征是高密度斑点分布在整个细胞中。虽然 Cu 的总量与间期中的细胞相似,但有丝分裂期 Zn 的水平增加了近 3 倍,这表明 Zn 除了作为金属蛋白酶的辅助因子或信号通路的信使之外,还具有突出的生理作用。