Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.
Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
Nat Chem Biol. 2020 Sep;16(9):973-978. doi: 10.1038/s41589-020-0587-9. Epub 2020 Jul 6.
The AROM complex is a multifunctional metabolic machine with ten enzymatic domains catalyzing the five central steps of the shikimate pathway in fungi and protists. We determined its crystal structure and catalytic behavior, and elucidated its conformational space using a combination of experimental and computational approaches. We derived this space in an elementary approach, exploiting an abundance of conformational information from its monofunctional homologs in the Protein Data Bank. It demonstrates how AROM is optimized for spatial compactness while allowing for unrestricted conformational transitions and a decoupled functioning of its individual enzymatic entities. With this architecture, AROM poses a tractable test case for the effects of active site proximity on the efficiency of both natural metabolic systems and biotechnological pathway optimization approaches. We show that a mere colocalization of enzymes is not sufficient to yield a detectable improvement of metabolic throughput.
AROM 复合体是一种多功能代谢机器,具有十个酶结构域,可催化真菌和原生动物中莽草酸途径的五个中心步骤。我们通过实验和计算相结合的方法确定了其晶体结构和催化行为,并阐明了其构象空间。我们通过一种基本方法推导出这个空间,利用其在蛋白质数据库中的单功能同源物中丰富的构象信息。它展示了 AROM 如何在允许无限制构象转变和其各个酶实体解耦功能的情况下,针对空间紧凑性进行优化。通过这种架构,AROM 为研究活性位点接近度对自然代谢系统和生物技术途径优化方法效率的影响提供了一个易于处理的测试案例。我们表明,仅仅将酶共定位并不足以显著提高代谢通量。