Suppr超能文献

检测全基因组表观遗传学研究中细胞类型特异性中介效应。

Testing cell-type-specific mediation effects in genome-wide epigenetic studies.

机构信息

Institute of Statistics and Big Data, Renmin University of China, Beijing, China.

Department of Environmental Health, Harvard University, Boston, MA, USA.

出版信息

Brief Bioinform. 2021 May 20;22(3). doi: 10.1093/bib/bbaa131.

Abstract

Epigenome-wide mediation analysis aims to identify DNA methylation CpG sites that mediate the causal effects of genetic/environmental exposures on health outcomes. However, DNA methylations in the peripheral blood tissues are usually measured at the bulk level based on a heterogeneous population of white blood cells. Using the bulk level DNA methylation data in mediation analysis might cause confounding bias and reduce study power. Therefore, it is crucial to get fine-grained results by detecting mediation CpG sites in a cell-type-specific way. However, there is a lack of methods and software to achieve this goal. We propose a novel method (Mediation In a Cell-type-Specific fashion, MICS) to identify cell-type-specific mediation effects in genome-wide epigenetic studies using only the bulk-level DNA methylation data. MICS follows the standard mediation analysis paradigm and consists of three key steps. In step1, we assess the exposure-mediator association for each cell type; in step 2, we assess the mediator-outcome association for each cell type; in step 3, we combine the cell-type-specific exposure-mediator and mediator-outcome associations using a multiple testing procedure named MultiMed [Sampson JN, Boca SM, Moore SC, et al. FWER and FDR control when testing multiple mediators. Bioinformatics 2018;34:2418-24] to identify significant CpGs with cell-type-specific mediation effects. We conduct simulation studies to demonstrate that our method has correct FDR control. We also apply the MICS procedure to the Normative Aging Study and identify nine DNA methylation CpG sites in the lymphocytes that might mediate the effect of cigarette smoking on the lung function.

摘要

全基因组范围内的表观遗传中介分析旨在识别 DNA 甲基化 CpG 位点,这些位点介导遗传/环境暴露对健康结果的因果效应。然而,外周血组织中的 DNA 甲基化通常是基于白细胞的异质群体在总体水平上测量的。在中介分析中使用总体水平的 DNA 甲基化数据可能会导致混杂偏倚并降低研究效力。因此,通过以细胞类型特异性的方式检测中介 CpG 位点来获得精细的结果至关重要。然而,目前缺乏实现这一目标的方法和软件。我们提出了一种新的方法(Mediation In a Cell-type-Specific fashion,MICS),该方法仅使用总体水平的 DNA 甲基化数据,在全基因组表观遗传研究中识别细胞类型特异性的中介效应。MICS 遵循标准的中介分析范式,由三个关键步骤组成。在步骤 1 中,我们评估每个细胞类型的暴露-中介物关联;在步骤 2 中,我们评估每个细胞类型的中介物-结果关联;在步骤 3 中,我们使用一种名为 MultiMed [Sampson JN, Boca SM, Moore SC, et al. FWER and FDR control when testing multiple mediators. Bioinformatics 2018;34:2418-24]的多重检验程序,将细胞类型特异性的暴露-中介物和中介物-结果关联结合起来,以识别具有细胞类型特异性中介效应的显著 CpG。我们进行模拟研究以证明我们的方法具有正确的 FDR 控制。我们还将 MICS 程序应用于正常老化研究,并确定了淋巴细胞中九个可能介导吸烟对肺功能影响的 DNA 甲基化 CpG 位点。

相似文献

本文引用的文献

7
Genomic Predictors of Asthma Phenotypes and Treatment Response.哮喘表型和治疗反应的基因组预测指标
Front Pediatr. 2019 Feb 5;7:6. doi: 10.3389/fped.2019.00006. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验